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Abstract 
Landslides are natural disasters that occur in many regions worldwide, 

particularly in mountainous areas. These events pose serious threats to human life 
and property and are often triggered by factors such as intense or prolonged 
rainfall, steep slopes, deforestation, road construction, and other land-use changes. 
These conditions alter the geological stability of an area, increasing the risk of 
landslides. Due to the sudden and unpredictable nature of landslides, early 
detection and accurate warnings are critical to minimizing damage and saving 
lives. This study aims to enhance the efficiency of landslide early warning systems 
using Fuzzy Logic, combined with MATLAB and a Threshold-based 
Classification method. A total of 30 initial data sets were collected, including 
values for rainfall, land slope, soil moisture, vibration, and readings from top and 
bottom sensors. Risk levels were classified into three categories based on Fuzzy 
Logic analysis: Low Risk (Safe) – no immediate danger; Medium Risk (Alert) – 
possible landslide, early warning required; and High Risk (Danger) – landslide 
imminent, immediate action needed. The study compared the performance of a 
conventional Threshold-based Classification method with a Fuzzy Logic-based 
approach. Evaluation was conducted using the Confusion Matrix to assess 
accuracy, precision, recall, and F1-score. The results demonstrate that the Fuzzy 
Logic method significantly outperforms the traditional approach. The model 
achieved an accuracy of 90.0%, precision of 91.4%, recall of 90.0%, and an F1-
score of 89.5%. The non-Fuzzy Logic method showed lower performance and 
misclassified data in cases with multiple risk levels. These findings indicate that 
integrating Fuzzy Logic improves the reliability of landslide early warning 
systems and supports better decision-making in high-risk areas. 
Keywords: Fuzzy Logic, Internet of Things, Sensors, Landslide Early Warning 
System

 

 

 

1. ພາກສະເໜ ີ
ດ ິ ນ ເຈ  ື່ ອນ  (Landslide or Mass movement) ຄ  ກ ານ

ເຄ ື່ອນທີື່ຂອງດິນ ຫ   ຫິນ ທີື່ລົງມາຕາມພູໂດຍແຮງໂນ້ມຖ່ວງຂອງໂລກ 

ນ ້າເປັນປັດໃຈຫ ຼັກທີື່ເຮຼັດໃຫ້ເກີດດິນເຈ ື່ອນ ເຊິື່ງນ ້າຈະເປັນຕົວຫ ຼຸດແຮງ

ຕ້ານທານໃນການເຄ ື່ອນທີື່ຂອງດິນ ຫ   ຫິນ ແລະ ນ ້າຈະເປັນຕົວທີື່ເຮຼັດ

ໃຫ້ດິນປ່ຽນຈາກຂອງແຂງເປັນຂອງແຫ ວໄດ້. ດິນເຈ ື່ອນເປັນປະກົດ

ການທີື່ພົບເຫຼັນໄດ້ໃນບໍລິເວນພູເຂົາທີື່ມີຄວາມສູງຊຼັນ ແນວໃດກໍຕາມ

ໃນບໍລິເວນທີື່ມີຄວາມຊຼັນຕ ໍ່າກໍສາມາດເກີດດິນເຈ ື່ອນໄດ້ຖ້າມີປັດໄຈທີື່

ພາໃຫ້ເກີດດິນເຈ ື່ອນ ໂດຍທົົ່ວໄປບໍລິເວນທີື່ມຼັກເກີດດິນເຈ ື່ອນ ແມ່ນ

ບໍລິເວນທີ ື່ໃກ້ກຼັບແນວຮອຍແຍກຂອງພູ ແລະ ມີການຍົກຕົວຂອງ

ແຜ່ນດິນຂ ້ນເປັນພູເຂົາສູງ, ບໍລິເວນທີື່ມີນ ້າກຼັດເຊາະເປັນຂຸມ ແລະ ຊຼັນ 

ບໍລິເວນທີື່ມີການແຕກຂອງດິນ ເຊິື່ງດິນເຈ ື່ອນມຼັກຈະເກີດຈາກການທີື່

ນ ້າຊ ມລົງໃນຊຼັ້ນດິນ ແລະ ເກີດແຮງດຼັນຂອງນ ້າເພີື່ມຂ ້ນໃນຊຼັ້ນດິນ 

ໂດຍສະເພາະໃນຊ່ວງທີື່ຝົນຕົກໜຼັກ, ຈາກສະຖານະການໄພພິບຼັດດິນ

ເຈ ື່ອນໃນປະຈຸບຼັນ ເລີື່ມທະວີຄູນຄວາມຮຸນແຮງຫ າຍຂ ້ນເລ ້ອຍໆ ນຼັບວ່າ

ເປັນປາກົດການທີື່ເກີດຂ ້ນຕາມທ າມະຊາດ. ເນ ື່ອງຈາກອິດທິພົນຂອງ

ຝົນ, ປັດໄຈທາງພາຍນອກ, ຊີວະພາບອ ື່ນໆ ໃນພ ້ນທີື່ ທີື່ບໍໍ່ສາມາດຄວບ

ຄຸມ ແລະ ຮອງຮຼັບປະລິມານນ ້າຝົນທີື່ຕົກໃຫ້ລະບາຍໄດ້ທຼັນຕາມຊ່ວງ
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ໄລຍະເວລາທີື່ຄວນຈະເປັນ ອາດຈະເປັນຍ້ອນປະລິມານນ ້າຝົນທີື່ຕົກ

ຫ າຍຈົນເກີນໄປເນ ື່ອງຈາກພາຍຸ, ລົມມໍລະສຸມພຼັດຜ່ານ ຫ   ຜົນກະທົບ

ຈາກການປ່ຽນແປງດ້ານໂຄງສ້າງ, ໜ້າທີື່ຂອງອົງປະກອບໃນພ ້ນທີື່ລຸ່ມ

ນ ້າ ເນ ື່ອງຈາກບໍໍ່ມີວິທີການທີື່ຈະສາມາດຮູ້ທຼັນເຫດການຈ ື່ງເຮຼັດໃຫ້ບໍໍ່

ສາມາດປ້ອງກຼັນ, ແກ້ໄຂສະຖານະການໄດ້ທຼັນທີ, ການຂາດອົງຄວາມຮູ້

ທາງດ້ານໄພພິບຼັດຕ່າງໆ ໂດຍສະເພາະປະຊາຊົນທີື່ຢູ່ໃນເຂດພ ້ນທີື່ສ່ຽງ

ໄພ ກໍເປັນປັດໄຈໜ ື່ງທີື່ສົົ່ງຜົນກະທົບໄປເຖິງການເກີດດິນເຈ ື່ອນຂ ້ນ. 

ກ າ ນຈ  າ ແ ນກດ ິ ນ ເ ຈ  ື່ ອ ນ ແມ ່ ນ ນ  າ ໃ ຊ ້ ກ ຼັ ນ ຢ ່ າ ງ ແ ຜ ່ ຫ  າ ຍ 

(Fleming&Varnes,1991). ເຊິື່ງອາໄສຫ ຼັກການຈ າແນກ ຊະນິດຂອງ

ວຼັດສະດຸທີື່ພຼັງທະລາຍລົງມາ (Type of Material) ແລະ ລຼັກສະນະ

ການເຄ ື່ອນທີື່ (Type of Movement).  

ອິນເຕີເນຼັດແຫ່ງສຼັບພະສິື່ງ (Internet of things-IoT) ຖ ກ

ຄົ້ນຄິດຂ ້ນໂດຍ Kevin Ashton ໃນປີ 1999 ເຊິື່ງເລີື່ມຕົ້ນ “Auto-

ID Center” ໃນມະຫາວິທະຍາໄລ (Massachusetts Institute of 

Technology) ຈ າກ ເ ຕ ຼັ ກ ໂນ ໂລຊ ີ  RFID (Radio Frequency 

Identification) ເປັນລະບົບທີື່ນ າເອົາຄ ້ນ ວິທະຍຸມາໃຊ້ໃນການສ ື່ສານ

ຂໍໍ້ມູນລະຫວ່າງອຸປະກອນສອງຊະນິດເຊິື່ງເປັນການສ ື່ສານແບບໄຮ້ສາຍ, 

ຕໍໍ່ມາໃນຍຸກຫ ຼັງປີ 2000 ເຕຼັກໂນໂລຊີຕ່າງໆໄດ້ຮຼັບການພຼັດທະນາຢ່າງ

ໄວວາ ເລີ ື່ມມີອຸປະກອນເອເລຼັກໂຕຣນິກອອກມາເປັນຈ ານວນຫ າຍ 

ແລະ ໄດ້ເລີື່ມມີການໃຊ້ຄ າວ່າ Smart ຂ ້ນເຊຼັົ່ນ: Smart Grid, Smart 

Home, Smart Device ແລະ Smart Network ເປັນຕົ້ນ (Scully, 

2020); ສິື່ງເຫ ົົ່ານີ້ສາມາດເຊ ື່ອມຕໍໍ່ກຼັບໂລກອິນເຕີເນຼັດໄດ້ ເຮຼັດໃຫ້ອປຸະ

ກອນດຼັົ່ງກ່າວສາມາດສ ື່ສານແລກປ່ຽນຂໍໍ້ມູນໄດ້ໂດຍອາໄສຕົວ ເຊຼັນເຊີ 

ໃນການສ ື່ສານເຖ ິງກຼັນໂດຍ Kevin Ashton ໄດ້ໃຫ ້ນ ິຍາມວ ່າ 

“Internet-like” ຕໍໍ່ມາມີຄ າວ່າ “Things” ເຂົ້າມາແທນອຸປະກອນເອ

ເລຼັກໂຕຣນິກຕ່າງໆ ອິນເຕີເນຼັດແຫ່ງສຼັບພະສິື່ງ ໝາຍເຖິງເຄ ອຂ່າຍວຼັດຖຼຸ 

ອປຸະກອນ, ພາຫະນະ, ສິື່ງປຸກສ້າງ ແລະ ສິື່ງຂອງອ ື່ນໆ ທີື່ມີວົງຈອນເອ

ເລຼັກໂຕຣນິກ, ຊອບແວ, ເຊຼັນເຊີ ແລະ ການເຊ ື່ອມຕໍໍ່ກຼັບເຄ ອຂ່າຍຢູ່ໃນ

ຕົວເຮຼັດໃຫ້ວຼັດຖຼຸເຫ ົ ົ່ານຼັ້ນສາມາດເກຼັບບຼັນທ ກ ແລະ ແລກປ່ຽນຂໍໍ້ມູນ

ໄດ້. 

Bounnady et al. (2022) ນ  າ ໃ ຊ ້  Internet of things-

IoT ເຂົ້າໃນງານຄົ້ນຄວ້າ-ວິໄຈກ່ຽວກຼັບ ລະບົບການຄວບຄຸມທາດ

ອາຫານອຼັດຕະໂນມຼັດໂດຍອິນເຕີເນຼັດແຫ່ງສຼັບພະສິື່ງສ າລຼັບພ ດໄຮໂດ

ລິກ ເຫຼັນໄດ້ວ່າການນ າໃຊ້ເຕຼັກໂນໂລຊີ ອິນເຕີເນຼັດເເຫ່ງຊຼັບພະສິື່ງນີ້ 

ເຮຼັດໃຫ້ພ ດມີອຼັດຕາການເຕີບໃຫຍ່ທີ ື່ດີກ່ອນການປູກແບບໃຊ້ຄົນ

ບົວລະບຼັດເບິື່ງແຍງເຖິງ 3.66% ແລະ ຜົນຜະລິດທີື່ໄດ້ສະເລ່ຍລວມ

ແມ່ນຈະເຫຼັນໄດ້ວ່າລະບົບທີື່ໃຊ້ເຕຼັກໂນໂລຊີອິນເຕີເນຼັດແຫ່ງຊຼັບພະສິື່ງ 

ມີອຼັດຕາຜົນຜະລິດທີື່ຫ າຍກວ່າການປູກແບບໃຊ້ຄົນບົວລະບຼັດເບິື່ງແຍງ

ເຖິງ 7.35% 

Lin et al. (2023) ໄດ້ໃຫ້ນິຍາມວ່າ ຟັດຊີ ໂລຈິກ ແມ່ນຮູບ

ແບບໜ  ື່ງຂອງຕຼັກກະທີື່ໃຊ້ໃນການໃຫ້ເຫດຜົນແບບປະເມີນຄ່າຫ າຍ

ກວ່າການໃຫ້ທີື່ຕາຍຕົວ ຫ   ຊຼັດເຈນຄ ກຼັນກຼັບຕຼັກກະແບບດຼັົ່ງເດີມທີື່ໃຫ້

ຄ່າເປັນແທ້ (1) ຫ   ບໍ ໍ່ແທ້ (0) ເທົົ່ານຼັ້ນຈະມີລ າດຼັບຄ່າຄວາມຈິງບາງ

ສ່ວນຄ : ຂໍໍ້ຄວາມອາດແທ້ ຫ   ບໍໍ່ແທ້ທຼັງໝົດ; ແຕ່ຄວາມເປັນຈິງແມ່ນມີ

ພຽງບາງສ່ວນເທົົ່ານຼັ້ນເຊຼັົ່ນ: ໃນ Fuzzy Logic ຄ າສຼັບທີື່ວ່າ “ນ ້າຮ້ອນ” 

ອາດຈະມີຄວາມຈິງແທ້ພຽງບາງສ່ວນໃນລະດຼັບ 0.7 ຫ   90.0% ແທນ

ທີື່ຈະມີພຽງແທ້ ຫ   ບໍ ໍ່ແທ້ເທົົ່ານຼັ ້ນ ສິ ື່ງນີ ້ເຮຼັດໃຫ້ Fuzzy Logic ມີ

ປະໂຫຍດຫ າຍໃນລະບົບທີື່ຕ້ອງມີການຕຼັດສິນໃຈຈາກຂໍໍ້ມູນທີື່ບໍໍ່ຊຼັດ

ເຈນ ຫ   ບໍໍ່ແນ່ນອນ. 

Kambalimath & Deka (2020) ຄົ້ນຄວ້າ-ວິໄຈ ກ່ຽວກຼັບ 

Fuzzy Logic ເປັນເຄ ື່ອງມ ໜ ື່ງທີື່ຖ ກນ າມາໃຊ້ໃນການປະເມີນຄວາມ

ສ່ຽງ ໂດຍມີຄວາມສາມາດໃນການຈຼັດການກຼັບຂໍໍ້ມູນທີື່ມີຄວາມບໍໍ່

ແນ່ນອນ ແລະ ຄວາມຊຼັບຊ້ອນສູງສາມາດປະເມີນສະພາບແວດລ້ອມ 

ໂດຍການໃຊ້ຂໍໍ້ມູນໃນລຼັກສະນະເປັນຊ່ວງ (Range) ຂອງຄວາມໜ້າຈະ

ເປັນໄປໄດ້ແທນທີື່ຈະເປັນການປະເມີນໃນຮູບແບບຕາຍຕົວ (Binary 

Decision) ໂດຍ Fuzzy Logic ຈະເຮຼັດໃຫ້ລະບົບສາມາດປະເມີນ

ສະຖານະການໄດ້ຢ່າງລະອຽດ ແລະ ຕອບສະໜອງຕໍໍ່ການປ່ຽນແປງຂອງ

ສະພາບແວດລ້ອມໄດ ້ຢ ່າງຊ ຼັດເຈນ ແລະ ຖ ກຕ ້ອງລະບົບຈ  ື່ ງມີ

ປະສິດທິພາບໃນການຄາດຄະເນການເກີດໄພພິບຼັດດິນເຈ ື່ອນ. 

Wardhana et al. (2019) ໄດ້ຄ ົ ້ນຄວ້າ-ວ ິໄຈ ການອອກ

ແບບທິດສະດີຂອງ Fuzzy Logic ເພ ື່ອປັບປຸງຄວາມຖ ກຕ້ອງຂອງ

ການເຕ ອນໄພດິນເຈ ື່ອນ; ລະບົບປະກອບດ້ວຍ: ປະລິມານນ ້າຝົນ 

(Rainfall), ຄວາມຊຼັນ (Land Slope), ເຊຼັນເຊີວຼັດແທກຄວາມຊຼຸ່ມ

ເທ ິ ງ  (Top Soil Moisture sensor) ແລະ  ລ ຸ ່ ມ  (Bottom Soil 

Moisture sensor),  ເ ຊ ຼັ ນ ເ ຊ ີ ວ ຼັ ດ ແທກຄວ າມສ ຼັ ົ່ ນ ສ ະ ເທ  ອນ 

(Vibration sensor). ຂໍ ໍ້ມູນນ າເຂົ ້າປະກອບມີ 33 ຂໍ ໍ້ມູນ, ລະດຼັບ

ຄວາມສ່ຽງແບ່ງອອກເປັນ 5 ຄວາມສ່ຽງຄ : Very safe, Relatively 

safe, Potential, Relatively,  Potential, and Very potential. 

ນ າເອົາຜົນການປຽບທຽບກຼັນລະຫວ່າງການແຈ້ງເຕ ອນໄພດິນເຈ ື່ອນ

ໂດຍນ າໃຊ້ Fuzzy Logic ແລະ ບໍໍ່ນ າໃຊ້ Fuzzy Logic ຜົນການ

ປຽບທຽບເຫຼັນວ່າມີ 7 ຂໍໍ້ມູນທີື່ແຕກຕ່າງກຼັນທຽບໄດ້ 2.03%. 

Sofwan & Azka (2019) ໄດ້ມີການນ າໃຊ້ຂໍ ໍ້ມູນໃນການ

ທົດລອງວຼັດແທກຕົວຈິງຄ  : ເຊ ຼັນເຊ ີວ ຼັດແທກຄວາມຊຼຸ ່ມ (Soil 

Moisture sensor),  ເ ຊ ຼັ ນ ເ ຊ ີ ວ ຼັ ດ ແທກຄວ າມສ ຼັ ົ່ ນ ສ ະ ເທ  ອ ນ 

(Vibration sensor), ປະລິມານນ ້າຝົນ (Rainfall sensor), ຄວາມ

ຊຼັນ (Land slope sensor). ແບ່ງອອກເປັນຈ ານວນ 30 ຂ ໍ ໍ້ມ ູນ; 

ລະດຼັບຄວາມສ່ຽງແບ່ງອອກເປັນ 3 ຄວາມສ່ຽງຄ : Safe, Alert, 

Danger ປຽບທຽບກຼັນລະຫວ່າງ Generalized Regression ແລະ 
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Feed Forward Backpropagation. ຜົນການປຽບທຽບເຫຼັນໄດ້ວ່າ

ມ ີຄວາມແຕກຕ ່ າງກ ຼັນຄ  ດ ຼັ ົ່ ງນ ີ ້ :  ວ ິທ ີການຂອງ Generalized 

Regression ແ ລ ະ  ວ ິ ທ ີ ກ າ ນ ຂ ອ ງ  Feed Forward 

Backpropagation ມີຄ່າຢູ່ທີື່ 0.00115 ແລະ 0.08702 ຕາມລ າດຼັບ. 

Gamperl et al. (2021) ໄດ້ຄົ້ນຄວ້າ-ວິໄຈ ກ່ຽວກຼັບລະບົບ

ເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ (LEWS: Landslide Early Warning 

System) ໂດຍການນ າໃຊ້ IoT ເຊຼັົ່ນ: Micro-Electro-Mechanical 

System (MEMS) ແລະ  LoRa (Long Range) ສາມາດເຊ ື່ອມຕໍໍ່

ກຼັບ ເຊຼັນເຊີ ຕ່າງໆໄດ້ຫ າກຫ າຍ. ລະບົບ LEWS ນ າໃຊ້ ເຊຼັນເຊີ ຫ າຍ

ຊະນິດ ແລະ ທີື່ສ າຄຼັນສຸດນິຍົມກຼັນມຼັກຈະຖ ກນ າໃຊ້ຕິດຕຼັ້ງໃນພ ້ນທີື່ທີື່

ສ່ຽງໄພດິນເຈ ື່ອນ. ໃນຫ າຍພ ້ນທີື່ທົົ່ວໂລກພົບເຫຼັນວ່າ ຫ ຼັກການທີື່ໃຊ້

ໃນການເຕ ອນໄພຄ  ປັດໄຈກະຕຸ ້ນເຊິ ື່ງສ່ວນໃຫຍ່ແມ່ນມາຈາກ: 

ປະລິມານນ ້າຝົນ (Rainfall) ແລະ ປະລິມານແຮງດຼັນຂອງນ ້າໃຕ້ດິນ 

(Pore water pressure)  ເພາະປັດໄຈຫ ຼັກທີື່ເຮຼັດໃຫ້ເກີດດິນເຈ ື່ອນກໍ

ຄ  ປະລິມານນ ້າຝົນ. 

Fatimah et al. (2020) ຄົ້ນຄວ້າ-ວິໄຈ ການເກີດດິນເຈ ື່ອນ

ຢູ່ທີື່ປະເທດ ອິນໂດເນເຊຍ, ດິນເຈ ື່ອນແມ່ນໜ ື່ງໃນໄພພິບຼັດທາງທ າມະ

ຊາດທີື່ມຼັກເກີດຂ ້ນໃນລະດູຝົນ. ໂດຍສະເພາະແມ່ນ ເຂດພູດອຍ, ຜາ, 

ເນີນພູ ເຊິື່ງກໍໍ່ໃຫ້ເກີດການສູນເສຍຫ າຍສົມຄວນ. ດຼັົ່ງນຼັ້ນ ລະບົບເຕ ອນ

ໄພລ່ວງໜ້າດິນເຈ ື່ອນຈ ື່ງມີຄວາມຈ າເປັນ. ສາເຫດຕົ້ນຕໍຂອງດິນເຈ ື່ອນ

ແມ່ນເກີດຈາກ ຄວາມຊຼັນ, ການສຼັົ່ນສະເທ ອນ ແລະ ປະລິມານນ້ າຫ າຍ

ເກີນໄປໃນດິນ. ເພ ື່ອວຼັດແທກຄ່າເຫ ົົ່ານີ້ Internet of Things (IoT) 

ຖ ກໃຊ້ງານຮ່ວມກຼັບ ເຊຼັນເຊີ ຕ່າງໆ. ໃນການສ ກສານີ້, Fuzzy ທີື່ໄດ້

ຮຼັບຄ່າຈາກການວຼັດແທກຂອງເຊຼັນເຊີ: ເຊຼັນເຊີວຼັດແທກການເຄ ື່ອນທີື່ 

(Accelerometer sensor),  ເ ຊ ຼັ ນ ເຊ ີ ວ ຼັ ດ ແທກການ ເໜ ຼັ ງຕ ົ ວ 

(Gyroscope sensor), ເຊຼັນເຊີວຼັດແທກຄວາມຊຼຸ່ມ (Soil Moisture 

sensor) ຖ ກສົົ່ງໄປຫາເຊີເວີ (Sever) Antares ໂດຍໃຊ້ LoRa. ໃນ

ການຄົ ້ນຄວ້າ Fuzzy Algorithm ຖ ກນ າໃຊ້ເພ ື່ອວິເຄາະຜົນການ

ວຼັດແທກຂອງ ເຊຼັນເຊີ ໃນຮູບແບບຂອງການຕຼັດສິນໃຈທ້າຍສຸດ ໂດຍ

ອີງໃສ່ ເກນການປະເມີນຄວາມສ່ຽງຄ  : ປອດໄພ (Safe), ເຕ  ອນ 

(Alert) ແລະ ສຼັງເກດການ (Watch out). ອີງຕາມຜົນທີື່ໄດ້ຮຼັບໃນ

ການສ ກສາຄົ້ນຄວ້ານີ້, ບົດສະຫ ຼຸບແມ່ນ ລະບົບການແຈ້ງເຕ ອນໄພລ່ວງ

ໜ້າດິນເຈ ື່ອນ ເບ ້ອງຕົ້ນເຮຼັດວຽກໄດ້ດີຕາມການຄາດຄະເນໄວ້ ໂດຍ

ມີຄ່າຄວາມຖ ກຕ້ອງ 90% ແລະ ຄ່າຄວາມຜິດພາດ 10% ອີງຈາກຂໍໍ້

ມູນນ າເຂົ້າຈ ານວນ 30 ຂໍໍ້ມູນ. ມີກົດຂອງ ຟັດຊີ (Fuzzy Rules) 27 

ກົດ ທີື່ສ້າງຂ ້ນຈາກ 3 ເຊຼັນເຊີ. 

Kapoor et al. (2016) ສ ກສາຄົ ້ນຄວ້າເນຼັ ້ນໃສ່ການແຈ້ງ

ເຕ ອນໄພດິນເຈ ື່ອນໄດ້ມີການນ າໃຊ້ ເຊຼັນເຊີ ວຼັດແທກການເຄ ື່ອນທີື່ 

(Accelerometer sensor), ເຊຼັນເຊີ ແຮງດຼັນນ ້າໃນດິນ (Pressure 

sensor); ເຮ ຼັດວຽກຮ ່ວມກ ຼັນກ ຼັບ ໂປຣເຊດເຊ ີ  Renesas GR-

Kaede. ຂໍ ໍ້ມູນຖ ກສົ ົ່ງໄປຫາ ເຄ ື່ອງເຊີເວີ (Sever) ຜ່ານ Zigbee. 

ເຄ ື່ອງເຊີເວີ (Sever) ແມ່ນເຮຼັດວຽກໂດຍໃຊ້ XAMPP ແລະ PHP 

ເຊິື່ງຕິດຕາມຂໍໍ້ມູນນ າເຂົ້າຢ່າງຕໍໍ່ເນ ື່ອງ. ຫ ຼັງຈາກນຼັ້ນ ເຊີເວີ (Sever) ຈະ

ສົົ່ງຂໍ ໍ້ມູນໄປຍຼັງແອຼັບລິເຄຊຼັນ Android ທີື່ຖ ກອອກແບບມາສະເພາະ

ເພ ື່ອແຈ້ງເຕ ອນຜູ້ໃຊ້ງານທຼັນທີທຼັນໃດທີື່ເກີດດິນເຈ ື່ອນຂ ້ນ, ເຊຼັນເຊີ 

ວຼັດແທກການເຄ ື່ອນທີື່ ຈະຖ ກກະຕຸ້ນ ແລະ ເຮຼັດໃຫ້ເກີດການປ່ຽນແປງ 

ເມ ື່ອຄ່າວຼັດແທກພົບເຫຼັນຄວາມອຽງຫ າຍກວ່າ 30° ໃນແຕ່ລະຄຼັ້ງ ແລະ 

ຖ ກກະຕຸ້ນ ເມ ື່ອມີການສຼັົ່ນສະເທ ອນດົນກວ່າ 30s ຕໍໍ່ຄຼັ ້ງ; ເຊຼັນເຊີ

ວຼັດແທກແຮງດຼັນ ຈະເຮຼັດວຽກກໍຕໍ ໍ່ເມ ື່ອມີແຮງດຼັນເພີື່ມຂ ້ນ. ຜູ ້ໃຊ້

ສາມາດສົົ່ງຂໍ ໍ້ຄວາມ ຫ   ໂທຫາເຈົ້າໜ້າທີື່ກ່ຽວຂ້ອງໂດຍກົງ ເຮຼັດໃຫ້

ສາມາດຊ່ວຍເຫ  ອຜູ້ສ່ຽງໄພດິນເຈ ື່ອນໄດ້ໂດຍທຼັນທີທຼັນໃດ. 

Wichuda et al. (2022) ໄດ້ສ ກສາກ່ຽວກຼັບການພຼັດທະນາ

ລະບົບກວດວຼັດໄພດິນເຈ ື່ອນໂດຍລະບົບ Internet of things (IoT) 

ເປັນການພຼັດທະນາໃຫ້ເຮຼັດວຽກຮ່ວມກຼັນໂດຍການສ ື່ສານຜ່ານ

ອຸປະກອນເອເລຼັກໂຕຣນິກສະແດງຜົນຜ່ານຊ່ອງທາງອິນເຕີເນຼັດນ າໄປສູ່

ການພຼັດທະນາການເຕ ອນໄພດິນເຈ ື່ອນທີີ ື່ເໝາະສົມ ຈາກຜົນການໃຊ້

ງານລະບົບດຼັົ່ງກ່າວໃນພ ້ນທີື່ສ່ຽງໄພດິນເຈ ື່ອນ ທີື່ບ້ານ ນ ້າຈູນ ແຂວງ 

ນ່ານ, ປະເທດໄທ ພົບວ່າມີການເຄ ື່ອນຕົວຂອງດິນລະດຼັບຕ ້ນ 0.5-

1.0m ປະມານ 30mm ປະລິມານນ ້າຝົນສະສົມ 600mm ໃນຊ່ວງ 3 

ເດ ອນ, ອຼັດຕາການເຄ ື່ອນຕົວຂອງດິນມີຄ່າ 0,015m/h ຄ່າເຫ ົ ົ່ານີ້

ບຼັນທ ກໂດຍລະບົບ IoT ທີ ີ ື່ປະກອບດ້ວຍ Arduino Meka2560 

ແລະ NB IoT (Narrowband Internet of Things) ເປັນຕົວກາງ

ສ າຄຼັນທີື່ເຮຼັດໃຫ້ເຄ ື່ອງມ ອຸປະກອນຕ່າງໆ ສາມາດເຊ ື່ອມຕໍໍ່ ແລະ ສົົ່ງຂໍໍ້

ມູນລະຫວ່າງກຼັນໄດ.້ 

ລະບົບເຕ ອນໄພພິບຼັດແຈ້ງເຕ ອນລ່ວງໜ້າກ າລຼັງຈະກາຍເປັນ

ໜ ື່ງໃນເສົາຫ ຼັກຂອງການປ້ອງກຼັນໄພພິບຼັດໃນທ າມະຊາດ ໂດຍສະເພາະ

ໃນກໍລະນີທີື່ບໍໍ່ສາມາດບຼັນລຸກົນລະຍຸດໃນການບຼັນເທົາຜົນກະທົບຈາກ

ໄພພິບຼັດ ດຼັົ່ງນຼັ ້ນ, ລະບົບເຕ ອນໄພຕ່າງໆໄດ້ມີການປັບປຸງການກວດ

ສອບອຼັນຕະລາຍທີື່ຈະເກີດຂ ້ນ ຈ ື່ງໄດ້ມີການຂະຫຍາຍຕົວຢ່າງຕໍໍ່ເນ ື່ອງ 

ແລະ ເປັນສິື່ງທີ ື່ທ້າທາຍຫ າຍ; ເລີ ື່ມຕົ້ນຈາກການເກຼັບກ າຂໍ ໍ້ມູນໄປ

ປະມວນຜົນເພ ື່ອນ າໄປວິເຄາະຂໍໍ້ມູນ ຈະຖ ກປະມວນຜົນຕາມຄວາມ

ຕ້ອງການຂອງຜູ້ໃຊ້ສະເພາະ ແລະ ສາມາດກະກຽມເພ ື່ອໃຊ້ຮ່ວມໃນ

ໂຄງສ້າງຂໍໍ້ມູນລະດຼັບທ້ອງຖິື່ນ, ລະດຼັບພາກພ ້ນ ລວມໄປຈົນເຖິງລະດຼັບ

ໂລກ (Jaiswal et al., 2021). 

ບົດຄົ້ນຄວ້າ-ວິໄຈສະບຼັບນີ້ ມີຈຸດປະສົງເພ ື່ອນ າໃຊ້ ຟັດຊີ ໂລ

ຈິກ ໃນການເພີື່ມປະສິດທິພາບການປະເມີນຜົນເຕ ອນໄພລ່ວງໜ້າດິນ

ເຈ ື່ອນ ແລະ ເພ ື່ອຄິດໄລ່ຫາຄ່າຕົວຊີ້ວຼັດໃນການປະເມີນຄວາມຖ ກຕ້ອງ

ແບບ Confusion Matrix ຂອງລະບົບເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ, 
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ໄດ້ມີການນ າໃຊ້ ໂປຣແກຣມ ແມຼັດແລຼັບ (MATLAB) (Akan et 

al., 2024) ແ ລ ະ  ທ ິ ດ ສ ະ ດ ີ  ຟ ັ ດ ຊ ີ  ໂ ລຈ ິ ກ  (Fuzzy Logic) 

(HARERIMANA, 2022) ເຂ້ົາຊ່ວຍໃນການສ ກສາຄົ້ນຄວ້ານີ້ ໂດຍ

ນ າໃຊ້ວິທີການເຮຼັດ Threshold-based Classification (Segoni 

et al., 2018) ເພ ື່ອນ າໄປເປັນຕົວປຽບທຽບລະຫວ່າງ ວິທີການນ າໃຊ້ 

ຟັດຊີ ໂລຈິກ ແລະ ວິທີການບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ. ຍຼັງໄດ້ມີການ

ຄ ິດໄລ ່ຫາຄ ່ າຕ ົວຊ ີ ້ວ ຼັດໃນການປະເມ ີນຄວາມຖ ກຕ ້ອງແບບ 

Confusion Matrix ດ ້ວຍ Accuracy, Precision, Recall ແລະ 
F1-Score (Amin et al., 2022) ເພ ື່ອປຽບທຽບປະສິດທິພາບຂອງ

ວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແລະ ວິທີການບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ; 

ເຊິື່ງໄດ້ມີການນ າໃຊ້ຂໍໍ້ມູນເຂ້ົາໃນການທົດລອງເບ ້ອງຕົ້ນຈ ານວນ 30 ຂໍໍ້

ມູນ (Sofwan&Azka, 2019). 

2. ອປຸະກອນ ແລະ ວທິກີານ 

2.1 ຂໍໍ້ມູນໃນການທົດລອງ 

- ຂໍໍ້ມູນເບ ້ອງຕົ້ນຈ ານວນ 30 ຂໍໍ້ມູນໄດ້ອ້າງອີງຄ່າມາຈາກ 

(Sofwan & Azka, 2019) ເຊິື່ງໄດ້ສະແດງໄວ້ໃນຕາຕະລາງທີ 1. 

1. ປະລິມານນ ້າຝົນ (Rainfall): ນ ້າຝົນເປັນປັດໄຈຫ ຼັກທີື່ພາໃຫ້ເກີດ

ດິນເຈ ື່ອນ. 

2. ຄວາມຊຼັນ (Land slope): ຄວາມຊຼັນຂອງພ ້ນດິນກໍເປັນປັດໄຈ

ຮ່ວມໃນການເກີດດິນເຈ ື່ອນຂ ້ນ. 

3. ຄວາມຊຼຸ່ມໃນດິນ (Soil moisture 1): ຄວາມຊຼຸ່ມເທິງດິນເປັນ

ຕົວຊີ້ວຼັດປະລິນມານນ ້າທີື່ຖ ກເກຼັບກຼັກໄວ້ ເທິງພ ນ້ດິນ. 

4. ຄວາມຊຼຸ່ມໃນດິນ (Soil moisture 2): ຄວາມຊຼຸ່ມໃນດິນເປັນຕົວ

ຊີ້ວຼັດປະລິນມານນ ້າທີື່ຖ ກເກຼັບກຼັກໄວ້ລຸ່ມພ ້ນດິນ. 

5. ຄວາມສຼັົ່ນສະເທ ອນ (Vibration): ການສຼັົ່ນສະເທ ື່ອນ ຫ   ການ

ເຄ ື່ອນຕົວກໍເປັນປັດໄຈຮ່ວມໃນການເກີດດິນເຈ ື່ອນຂ ້ນ. 

- ການປະເມີນຄວາມສ່ຽງ 

ລະດຼັບຄວາມສ່ຽງແບ່ງອອກເປັນ 3 ລະດຼັບຕາມການວິເຄາະຂອງ 

Fuzzy Logic ຄ : 

1. ຄວາມສ່ຽງຕ ໍ່າ (Safe): ສະພາບປົກກະຕິບໍໍ່ມີອຼັນຕະລາຍທຼັນທີ. 

2. ຄວາມສ່ຽງປານກາງ (Alert): ມີໂອກາດເກີດດິນເຈ ື່ອນຂ ້ນ, ຕ້ອງ

ເລີື່ມສົົ່ງສຼັນຍານແຈ້ງເຕ ອນໄພລ່ວງໜ້າ. 

3. ຄວາມສ່ຽງສູງ (Danger): ດິນກ າລຼັງຈະເຈ ື່ອນ ຕ້ອງມີການຮຼັບມ 

ໃຫ້ທ່ວງທຼັນ. 

2.2 ວິທີການທົດລອງ  

ໂດຍການປະມວນຜົນຈາກ Fuzzy Logic system ລະບົບ

ການປະມວນຜົນຂອງ ຟັດຊີ ໂລຈິກປະກອບມີ 3 ຂຼັ້ນຕອນ ຄ :  

2.2.1 ການປ່ຽນຄ່າ (Fuzzification) 

 ເປັນຂຼັ້ນຕອນທ າອິດໃນຕຼັກກະຂອງ ຟັດຊີ (Fuzzy) ດຼັົ່ງທີື່

ໄດ້ສະແດງໄວ້ໃນ ຕາຕະລາງທີ 3 ເຊິ ື່ງກ່ຽວກຼັບການປ່ຽນແປງຄ່າ

ຈ  ານວນສະເພາະ  (Crisp input) ໃຫ ້ ເປ ັ ນຄ ່ າ  Fuzzy (Fuzzy 

values) ທີ ື່ສາມາດປະມວນຜົນໄດ້ໃນລະບົບ, ຄ່າຈ ານວນສະເພາະ

ແມ່ນ ຄ່າຂໍໍ້ມູນຕົວເລກທີື່ມີຄວາມຊຼັດເຈນສູງເຊຼັົ່ນ: ອຸນຫະພູມ ຫ   ແຮງ

ດຼັນນ ້າທີ ື່ວ ຼັດແທກຄ່າໄດ້ແນ່ນອນ, ແຕ່ຄ່າຂອງ Fuzzy ຈະເປັນ

ລຼັກສະນະເຊຼັົ່ນ: ຕ ໍ່າ, ປານກາງ, ສູງ ເຊິື່ງສະແດງເຖິງລ າດຼັບຂອງຄວາມ

ຈິງໃນຕຼັກກະຂອງ Fuzzy. ຂະບວນການນີ້ກ່ຽວຂ້ອງກຼັບການຈຼັບຄູ່ຄ່າ

ຈ ານວນສະເພາະເຫ ົົ່ານີ້ເຂົ້າສູ່ (Fuzzy sets) ໂດຍໃຊ້ຟັງຊຼັນສະມາຊິກ 

(Membership functions) (Zadeh, 2023).  

2.2.2 ກົດຂອງຟັດຊີ (Fuzzy Rules) 

ອີງຕາມການນ າເຂົ ້າຂໍ ໍ້ມູນ ປະກອບມີ 5 ຕົວຄ : ເຊຼັນເຊີ

ວຼັດແທກຄວາມຊຼຸ່ມໃນດິນ (Soil Moisture Sensor) ລວມມີ 2 ຂໍໍ້

ມູນຈາກເຊຼັນເຊີເທິງດິນ ແລະ ລຸ່ມດິນ, ເຊຼັນເຊີວຼັດແທກຄວາມສຼັົ່ນ

ສະເທ  ອນ (Vibration Sensor), ປະລ ິມານນ  ້ າຝ ົນ  (Rainfall), 

ຄວາມຊຼັນ (Land Slope); ລະດຼັບການເຕ ອນໄພປະກອບມີ 3 ລະດຼັບ

ຄ : ຄວາມສ່ຽງຕ ໍ່າ (Safe), ຄວາມສ່ຽງປານກາງ (Alert), ຄວາມສ່ຽງ

ສູງ (Danger). ດຼັົ່ງນຼັ້ນ, ກົດຂອງຟັດຊີ 243 ກົດຖ ກສ້າງຂ ້ນໂດຍ ສົມ

ຜົນ 35 = 243. ເມ ື່ອໄດ້ຂໍໍ້ມູນຈ ານວນ 30 ຂໍໍ້ມູນຈະນ າເຂ້ົາສູ່ຂະບວນ

ການ Fuzzification ເພ  ື່ອປ່ຽນແປງຄ່າຈ ານວນສະເພາະ (Crisp 

input) ໃຫ້ເປັນຄ່າ Fuzzy (Fuzzy value) ທີື່ສາມາດປະມວນຜົນ

ໄດ້ໃນລະບົບ (Zadeh, 2023). 

2.2.3   ການປ່ຽນຄ່າຟັດຊີໃຫ້ເປັນຄ່າທີື່ໃຊ້ງານຈິງ 

(Defuzzification) 

ເປັນຂຼັ້ນຕອນສຸດທ້າຍໃນ Fuzzy Logic ເປັນຂະບວນການ
ໃນການແປງຄ່າຈາກ Fuzzy values ທີ ື່ໄດ້ຈາກຂຼັ ້ນຕອນ Fuzzy 
Inference Engine ກຼັບໄປເປັນຄ່າຈ ານວນສະເພາະ (Crisp value) 
ທີ ື່ສາມາດນ າໄປໃຊ້ໃນການຕຼັດສິນໃຈ ຫ   ການຄວບຄຸມໄດ້ , ຄ່າ 
Fuzzy ເປັນຜົນລຼັບທີື່ໄດ້ຈາກກົດຂອງຟັດຊີ (Fuzzy Rule) ໃນຮູບ
ແບບຂອງຂໍໍ້ມູນຄ : “ຕ ໍ່າ”, “ປານກາງ”, “ສູງ” ເຊິື່ງຖ ກແປງຄ່າກຼັບໄປເປັນ
ຄ່າຕົວເລກຈ ານວນເຕຼັມ (Zadeh, 2023). 
2.3 ເກນຄວາມສ່ຽງ 

 ດຼັ ົ່ງທີື່ໄດ້ສະແດງໃນ ຕາຕະລາງທີ 2, ມີການສະແດງປະເພດ 

ຂອງການນ າເຂົ້າຂໍ ໍ້ມູນ 5 ຕົວຄ : ເຊຼັນເຊີວຼັດແທກຄວາມຊຼຸ່ມໃນດິນ 

(Soil Moisture Sensor) ລວມມີ 2 ຂໍໍ້ມູນຈາກເຊຼັນເຊີເທິງດິນ ແລະ 

ລຸ່ມດິນ, ເຊຼັນເຊີວຼັດແທກຄວາມສຼັົ່ນສະເທ ອນ (Vibration Sensor), 

ປະລິມານນ ້າຝົນ (Rainfall), ຄວາມຊຼັນ (Land Slope); ມີເກນ

ຄວາມສ່ຽງຄ : ຕ ໍ່າ (Low), ປານກາງ (Medium), ສູງ (High). ເຊິື່ງ

ມີນ ້າໜຼັກຂອງແຕ່ລະຂໍໍ້ມູນທີື່ແຕກຕ່າງກຼັນ ຈາກຂໍໍ້ມູນທີື່ໄດ້ມາຈາກ 

(Sofwan&Azka, 2019) ເຫຼັນວ່ານ ້າໜຼັກຂອງຂໍໍ້ມູນ Vegetation 
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ບໍໍ່ໄດ້ຖ ກນ າໃຊ້ເຂົ ້າໃນການຄ ານວນເຊິື່ງເຮຼັດໃຫ້ຜົນຂອງການເຮຼັດ 

Fuzzy Logic ມີຄວາມຄາດເຄ ື່ອນໄດ້. ສະນຼັ້ນ ໃນງານຄົ້ນຄວ້ານີ້ຈ ື່ງ

ໄດ້ທ າການນ າເອົາສຼັດສ່ວນນ ້າໜຼັກຂອງ Vegetation ມາຄິດໄລ່ຄ ນ

ເພ ື່ອໃຫ້ໄດ້ນ ້າໜຼັກຂອງແຕ່ລະຂໍໍ້ມູນໃໝ່ ແຕ່ຍຼັງຮຼັກສາອຼັດຕາສ່ວນອຼັນ

ເກົົ່າໄວ້ ດຼັົ່ງທີື່ສະແດງໃນຕາຕະລາງທີ 2. 

2.4 ວິທີການເກຼັບກ າຂໍໍ້ມູນ 

 ໃນການດ າເນີນການຄົ້ນຄວ້າໃນຄຼັ້ງນີ້ໄດ້ມີການເກຼັບກ າຂໍໍ້ມູນຄ : 

ຂໍໍ້ມູນຈິງທີື່ໄດ້ອ້າງອີງມາຈາກ (Sofwan&Azka, 2019) ເຫຼັນວ່າໄດ້

ມີການນ າໃຊ້ສູດຄູນດ້ວຍນ ້າໜຼັກທີື່ພາໃຫ້ເກີດດິນເຈ ື່ອນທີື່ກ າໜົດໄວ້

ນຼັ້ນເພ ື່ອໃຫ້ໄດ້ຜົນລຼັບຂອງຄ່າສະພາບຄວາມເປັນໄປໄດ້ໃນການເກີດ

ດິນເຈ ື່ອນໂດຍນ າໃຊ ້ສົມຜົນເຂົ້າໃນການເກຼັບກ າຂໍໍ້ມູນ ດຼັົ່ງລຸ່ມນີ້:

 

𝑂𝑢𝑡𝑝𝑢𝑡 = (𝐵𝐵 × 1 × 0.15) + (𝐵𝐵 × 2 × 0.3) + (𝐵𝐵 × 3 × 0.11) 
+(𝐵𝐵 × 4 × 0.11) + (𝐵𝐵 × 5 × 0.23) + 0.2 

𝐵𝐵 × 1: ແມ່ນຄ່າຂອງປະລິມານນ ້າຝົນ; 

𝐵𝐵 × 2: ແມ່ນຄ່າຂອງຄວາມຊຼັນຂອງດິນ;  

𝐵𝐵 × 3: ແມ່ນຄ່າຂອງຄວາມຊຼຸ່ມເທິງດິນ; 

𝐵𝐵 × 4: ແມ່ນຄ່າຂອງຄວາມຊຼຸ່ມໃນລຸ່ມດິນ; 

𝐵𝐵 × 5: ແມ່ນຄ່າຂອງຄວາມສຼັົ່ນສະເທ ອນ;

 

2.5 ວທິກີານວຼັດຜນົ 

 ການຄິດໄລ່ຫາຄ່າຕົວຊີ້ວຼັດໃນການປະເມີນຄວາມຖ ກຕ້ອງ

ແບບ Confusion Matrix ຂອງລະບົບເຕ ອນໄພລ່ວງ ໜ້າດິນເຈ ື່ອນ 

ປະກອບດ້ວຍ Accuracy, Precision, Recall ແລະ F1-Score ດຼັົ່ງ
ສົມຜົນລຸ່ມນີ້ (Amin et al., 2022): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =
𝑇𝑃𝑐

(𝑇𝑃𝑐 +  𝐹𝑃𝑐)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐 =
𝑇𝑃𝑐

(𝑇𝑃𝑐 + 𝐹𝑁𝑐)
 

 

F1-Score= (
1
C) × ∑ 2 ×

(Precisionc× Recallc)

(Precisionc+ Recallc)

c

c=1

 

TP (True Positive): ຄາດຄະເນວ່າມີການແຈ້ງເຕ ອນ ແລະ 

ຄ່າຈິງແມ່ນມີການແຈ້ງເຕ ອນ; 

TN (True Negative): ຄາດຄະເນວ່າມີການແຈ້ງເຕ ອນ 

ແລະ ຄ່າຈິງແມ່ນບໍໍ່ມີການແຈ້ງເຕ ອນ; 

FP (False Positive): ຄາດຄະເນວ່າບໍ ໍ່ມີການແຈ້ງເຕ ອນ 

ແລະ ຄ່າຈິງແມ່ນມີການແຈ້ງເຕ ອນ; 

FN (False Negative): ຄາດຄະເນວ່າບໍ ໍ່ມີການແຈ້ງເຕ ອນ 

ແລະ ຄ່າຈິງແມ່ນບໍໍ່ມີການແຈ້ງເຕ ອນ; 

c: ແມ່ນຄ່າຂອງຈ ານວນລະດຼັບການເຕ ອນໄພທຼັງ 3 ລະດຼັບ 
(Safe, Alert ແລະ Danger) 

2.6 ການວິເຄາະຂໍໍ້ມູນ 

 ຫ ຼັງຈາກເກຼັບກ າຂໍໍ້ມູນແລ້ວການເຮຼັດງານວິໄຈ-ຄົ້ນຄວ້າຈະໄດ້

ນ າເອົາຂໍ ໍ້ມູນມາສ ບຕໍໍ່ດ າເນີນການວິເຄາະຂໍໍ້ມູນ ໂດຍນ າໃຊ້ສົມຜົນ

ຄິດໄລ ່ດຼັົ່ງທີື່ສະແດງໄວ້ໃນສົມຜົນ (2), (3), (4) ແລະ (5)ຄ : 

- (Accuracy) ຄິດໄລ່ຫາຄ່າຄວາມຖ ກຕ້ອງ: ເປັນຄ່າທີື່ບົ ົ່ງ

ບອກເຖິງຄວາມສາມາດຂອງການເເຈ້ງເຕ ອນການສ່ຽງໄພດິນເຈ ື່ອນ 

ໃນການຄາດຄະເນຄວາມສ່ຽງໃຫ້ໃກ້ຄຽງ ຫ   ຖ ກຕ້ອງກຼັບຄ່າຈິງທີື່ສຸດ. 

- (Precision) ຄິດໄລ່ຫາຄ່າຈ ານວນການຄາດຄະເນເປັນຈິງ

ທີື່ຖ ກຕ້ອງ: ຖ້າ Precision ສູງສະແດງວ່າທຸກໆຄຼັ້ງທີື່ລະບົບແຈ້ງເຕ ອນ
ວ່າມີຄວາມສ່ຽງສ ູງກ ໍຈະເກ ີດດ ິນເຈ  ື່ອນຂ ້ນແທ້ ,  ແຕ ່ຖ ້າຫາກ 

Precision ຕ ໍ່າສະແດງວ່າລະບົບມີການແຈ້ງເຕ ອນຜິດພາດຕະຫ ອດ 
(False Alarms). 

(2) 

(3) 

(4) 

(5) 

(1) 
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- (Recall) ຄ ິດໄລ່ຫາຄ່າຄວາມສາມາດໃນການຈຼັບກຸ ່ມ
ຄວາມສ່ຽງທີື່ເກີດດິນເຈ ື່ອນໄດ້ຖ ກຕ້ອງ: ຖ້າ Recall ສູງສະແດງວ່າ
ລະບົບສາມາດກວດວຼັດຄວາມສ່ຽງທີື່ພາໃຫ້ເກີດດິນເຈ ື່ອນໄດ້ເກ ອບ

ທຸກໆຄຼັ້ງ, ຖ້າ Recall ຕ ໍ່າສະແດງວ່າລະບົບຄາດຄະເນຜິດໃນການກວດ
ວຼັດຄວາມສ່ຽງທີ ື່ພາໃຫ້ເກີດດິນເຈ ື່ອນເກ ອບທຸກໆຄຼັ ້ງ (False 

Negatives). 

- (F1-Score) ຄິດໄລ່ຫາຄ່າປະສິດທິພາບຄວາມຖ ກຕ້ອງ: 
ເປ ັນຄ ່ າສະເລ ່ຍແບບ Harmonic mean ຂອງ Precision ແລະ 
Recall. 
3 ຜນົໄດຮ້ຼັບ 

ຜ່ານການທົດລອງ ເຫຼັນໄດ້ວ່າ  ການປຽບທຽບລະຫວ່າງຂໍໍ້ມູນ

ຊຼຸດທີ 1-30 ໂດຍວິທີການທີື່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແລະ ວິທີການບໍໍ່ນ າ

ໃຊ້ ຟັດຊີ ໂລຈິກ ທີື່ສະແດງໄວ້ໃນຕາຕະລາງທີ 4 ນຼັ້ນ, ເຮົາສາມາດ

ສຼັງເກດເຫຼັນວ່າ ວິທີການທີື່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ ມີການຄາດຄະເນທີື່

ຖ ກຕ້ອງສູງຫ າຍພໍສົມຄວນໃນທຼັງໝົດຂອງຊຼຸດຂໍໍ້ມູນຄວາມສ່ຽງຕ ໍ່າ 

ແລະ ສູງ ເມ ື່ອທຽບກຼັບວິທີການທີື່ບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແມ່ນຍຼັງມີ

ການຄາດຄະເນຜິດໃນຫ າຍຊຼຸດຂໍໍ້ມູນຄວາມສ່ຽງ; ໃນສ່ວນຂອງການ

ປຽບທຽບການຄິດໄລ່ຫາຕົວຊີ້ວຼັດການປະເມີນຄວາມຖ ກຕ້ອງແບບ 

Confusion Matrix ຂອງລະບົບເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນທີື່ໄດ້

ຄິດໄລ່ຫາຄ່າ Accuracy, Precision, Recall ແລະ F1-Score ຜົນ
ການປຽບທຽບເຫຼັນໄດ້ວ່າມີຄວາມແຕກຕ່າງກຼັນຄ ດຼັົ່ງນີ້:  

ວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ມີຄ່າ Accuracy ແມ່ນເຮຼັດໄດ້
ດ ີກ ່ອນວິທີການບໍ ໍ່ນ  າໃຊ້ ຟ ັດຊີ ໂລຈິກ ປຽບທຽບໄດ້ 6.7% , 

Precision ແມ່ນເຮຼັດໄດ້ດີກ່ອນ ປຽບທຽບໄດ້ 4.0%, Recall ແມ່ນ
ເຮຼັດໄດ້ດີກ່ອນ ປຽບທຽບໄດ້ 6.7% ແລະ F1-Score Recall ແມ່ນ
ເຮຼັດໄດ້ດີກ່ອນ ປຽບທຽບໄດ້ 7.8%. ດຼັົ່ງທີື່ສະແດງຜົນການປຽບທຽບ

ປະສິດທິພາບຂອງວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແລະ ວິທີການບໍໍ່ນ າໃຊ້ 

ຟ ັດຊ ີ  ໂລຈ ິກ ດ ້ວຍ Accuracy, Precision, Recall ແລະ F1-
Score ໃນຕາຕະລາງທີ 5. 

ດຼັົ່ງນຼັ້ນ ຈາກຜົນການທົດລອງນີ້ຈ ື່ງສາມາດເວົ້າໄດ້ວ່າ ວິທີການ

ທີື່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ ມີຄວາມແທດເໝາະໃນການນ າໃຊ້ເຂົ້າໃນວຽກ

ງານດ້ານການແຈ້ງເຕ ອນໄພພິບຼັດເພ ື່ອປັງປຸງຄວາມຖ ກຕ້ອງຂອງລະບົບ

ເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ. 

4.  ວພິາກຜນົ 
ຈາກຜົນການວິໄຈ-ຄົ້ນຄວ້າເຫຼັນໄດ້ວ່າ ແນວຄວາມຄິດວິທີ

ການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ເຂົ້າໃນລະບົບເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ 

(Zadeh, 2023) ມີຄວາມສ າຄຼັນຢ່າງຫ ວງຫ າຍ ແລະ ຍຼັງມີປັດໄຈຫ າຍ

ປະການທີື່ຈະສົົ່ງຜົນຕໍໍ່ການເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ, ເຊິື່ງວິທີການທີື່

ບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແມ່ນອີງຈາກວິທີການເຮຼັດ Threshold-based 

Classification ຂອງຂ ໍ ໍ້ມ ູນຈາກເຊ ຼັນເຊ ີຕ ່າງໆ  (Segoni et al., 

2018). Threshold-based classification ແມ່ນວິທີການທີື່ຖ ກນ າ

ມາໃຊ້ຢ່າງແຜ່ຫ າຍໃນລະບົບການແຈ້ງເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ 

ເຊ ິ ື່ງການຕຼັດສິນໃຈ ແບບຂອບເຂດໄບນາລີ (binary decision 

boundaries) ໄດ້ນ າເອົາຄ່າຈາກຂໍໍ້ມູນເຊຼັນເຊີທີື່ກ່ຽວຂ້ອງມາຕຼັດສິນ

ໃຈ (Guzzetti et al., 2007; Brunetti et al., 2010). ຈາກຂໍໍ້ມູນ

ນ າເຂົ້າທີື່ໃຊ້ໃນການທົດລອງຈ ານວນ 30 ຂໍໍ້ມູນ, ຜ່ານການທົດລອງ 

ເຫຼັນໄດ້ວ່າ ວິທີການທີື່ບໍ ໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ (Threshold-based 

classification) ມີການຄາດຄະເນຜິດຈ ານວນ 7 ຂໍໍ້ມູນທຽບກຼັບວິທີ

ການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ເຊິື່ງສະແດງໃນຕາຕະລາງທີ 4. ຜົນການທົດ

ລອງຮູບທີ 1 ແລະ ຮູບທີ 2 ຍຼັງສະແດງໃຫ້ເຫຼັນວ່າ ວິທີການນ າໃຊ້ ຟັດ

ຊີ ໂລຈິກ ສາມາດຄາດຄະເນໄດ້ກຼັບທຸກຊຼຸດຂໍໍ້ມູນຂອງຄວາມສ່ຽງສູງ, 

ເຮຼັດໃຫ້ເຫຼັນວ່າການໃຊ້ງານຟັດຊີໂລຈິກມີຄວາມປອດໄພສູງໃນການ

ໃຊ້ງານທີື່ອາດມີຜົນກະທົບຮ້າຍແຮງໄດ້. ນອກຈາກນີ້ ໃນສະຖານະ

ການທີື່ມີຄວາມສ່ຽງປານກາງ, ວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ສາມາດ

ແຈ້ງເຕ ອນເປັນຄວາມສ່ຽງປານກາງ 70% ເຊິື່ງທຽບກຼັບວິທີການບໍໍ່ນ າ

ໃຊ້ ຟັດຊີ ໂລຈິກ ແມ່ນຍຼັງມີບາງຊຼຸດຂໍໍ້ມູນທີື່ແຈ້ງເຕ ອນເປັນຄວາມສ່ຽງ

ຕ ໍ່າ ເຊິິື່ງສາມາດກໍໍ່ໃຫ້ເກີດຄວາມອ່ອນໄຫວຕໍໍ່ລະບົບການແຈ້ງເຕ ອນໄດ້

ງ່າຍ. ຈາກຜົນການທົດລອງທຼັງໝົດກຼັບຊຼຸດຂໍໍ້ມູນ, ວິທີການນ າໃຊ້ ຟັດ

ຊີ ໂລຈິກ ສາມາດຄາດຄະເນໄດ້ຖ ກຕ້ອງ 90.0% ເມ ື່ອທຽບກຼັບທີື່ບໍໍ່ນ າ

ໃຊ້ ຟັດຊີ ໂລຈິກ ແມ່ນມີພຽງ 83.3%, ເຊິື່ງການຄາດຄະເນກຼັບຊຼຸດຂໍໍ້

ມູນດຼັົ່ງກ່າວນີ້ ວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກຍຼັງສາມາດເຮຼັດໄດ້ 100% 

ກຼັບຂໍໍ້ມູນທີື່ເປັນຄວາມສ່ຽງຕ ໍ່າ ແລະ ສູງ, ເຊິື່ງທຽບກຼັບວິທີການບໍໍ່ໃຊ້ 

ຟັດຊີ ໂລຈິກແມ່ນມີການຄາດຄະເນຜິດພາດເຖິງ 35% ໃນສະຖານະ

ການທີື່ມີຄວາມສ່ຽງຕ ໍ່າ ແລະ ຄວາມສ່ຽງສູງ. 

ດຼັົ່ງນຼັ້ນ, ຈ ື່ງສາມາດເຫຼັນໄດ້ເຖິງຄວາມສ າຄຼັນຂອງການນ າໃຊ້ 

ຟັດຊີໂລຈິກ ໃນການປັບປຸງຄວາມຖ ກຕ້ອງການເຕ ອນໄພລ່ວງໜ້າດິນ

ເຈ ື່ອນ ຖ້າຫາກບໍໍ່ມີການຄາດຄະເນຂອງ ຟັດຊີ ໂລຈິກ ເຂ້ົາມາຊ່ວຍເຮົາ

ກໍຈະບໍໍ່ສາມາດເຫຼັນໄດ້ເຖິງຄວາມອຼັນຕະລາຍ ແລະ ຄວາມສ່ຽງທີື່ຈະ

ເກີດຂ ້ນຄ : ລະບົບເຕ ອນໄພດິນເຈ ື່ອນຄາດຄະເນວ່າ ລະດຼັບຄວາມ

ສ່ຽງຕ ໍ່າທີື່ຈະເກີດດິນເຈ ື່ອນຂ ້ນ ແຕ່ຄ່າຈິງແມ່ນມີຄວາມສ່ຽງປານກາງທີື່

ຈະເກີດດິນເຈ ື່ອນ, ຖ້າຫາກໄດ້ມີການຮຼັບຮູ້ຈາກແຫ ່ງຂໍໍ້ມູນທີື່ຖ ກຕ້ອງ

ທຼັນທີທຼັນໃດ ເພ ື່ອພ້ອມຮຼັບມ ກຼັບສະຖານະການທີື່ຈະເກີດຂ ້ນນຼັ້ນ ຈະ

ສາມາດຊ່ວຍຫ ຼຸດຜ່ອນຜົນກະທົບທີື່ຮ້າຍແຮງ ແລະ ໃຫຍ່ຫ ວງ; ເນ ື່ອງ

ຈາກໄພພິບຼັດດິນເຈ ື່ອນນີ້ແມ່ນຈ າເປັນຕ້ອງມີການເຝົົ້າລະວຼັງ, ຕິດຕາມ

ຢູ່ເລ ້ອຍໆແຕ່ລະໄລຍະ ເພ ື່ອຮຼັບປະກຼັນຄວາມປອດໄພຂອງປະຊາຊົນໃນ

ພ ້ນທີື່ສ່ຽງໄພ ຫ   ເຂດພ ້ນທີື່ໄກ້ຄຽງນຼັ້ນ ແລະ ຍຼັງຊ່ວຍໃຫ້ຫ ຼຸດຜ່ອນ

ບຼັນຫາທີື່ຈະເກີດຂ ້ນໃນພາຍຫ ຼັງໄດ້. 

ຜົນການຄົ້ນຄວ້າ ຍຼັງສອດຄ່ອງກຼັບທິດສະດີ (Wardhana et 

al., 2019) ທີື່ໄດ້ອະທິບາຍວ່າ ການນ າໃຊ້ ຟັດຊ ີໂລຈິກ ເຂ້ົາໃນລະບົບ
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ເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນແມ່ນມີຄວາມສ າຄຼັນຫ າຍ ແລະ ຍຼັງສາມາດ

ເຮຼັດວຽກໄດ້ດີຂ ້ນ ເມ ື່ອກ າໜົດກົດ (Fuzzy Rules) ໃຫ້ ຟັດຊີ ໂລ

ຈິກ ຫ າຍເທົ ົ່າໃດຜົນທີ ື່ໄດ້ນຼັ ້ນກໍຈະມີປະສິດທິພາບ ແລະ ຄວາມ

ຖ ກຕ້ອງເພີື່ມຂ ້ນຫ າຍເທົົ່ານຼັ້ນ. 

5. ສະຫ ຼຸບ 

ບົດຄ ົ ້ນຄວ ້າ-ວ ິໄຈສະບຼັບນ ີ ້  ໄດ ້ມ ີ ເປ ົ ົ້ າໝາຍເພ  ື່ອເພ ີ ື່ມ

ປະສິດທິພາບ ການແຈ້ງເຕ ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ, ໂດຍນ າໃຊ້ ໂປຣ

ແກຣມ ແມຼັດແລຼັບ (MATLAB) ແລະ ວິທີການຂອງ Fuzzy Logic 

ປະເພດ Mamdani Fuzzy Inference System ເຂົ້າຊ່ວຍໃນການ

ຮ່ວມປະມວນຜົນໃນການຕຼັດສິນໃຈໃຫ້ມີຄວາມຖ ກຕ້ອງສູງ ແລະ ໄດ້

ມີການຄິດໄລ່ຫາຄ່າຕົວຊີ ້ວຼັດໃນການປະເມີນຄວາມຖ ກຕ້ອງແບບ 

Confusion Matrix ປະກອບດ້ວຍ Accuracy, Precision, Recall 
ແລະ F1-Score ຂອງລະບົບເຕ  ອນໄພລ່ວງໜ້າດິນເຈ ື່ອນ ເພ  ື່ອ

ປຽບທຽບປະສິດທິພາບລະຫວ່າງວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແລະ 

ວິທີການບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ. 

ຜົນການທົດລອງສາມາດຢັົ້ງຢືນໄດ້ວ່າ ຟັດຊີ ໂລຈິກ ມີຄວາມເ

ໝາະສົມໃນການປັບປຸງຄວາມຖ ກຕ້ອງໃນລະບົບເຕ ອນໄພລ່ວງໜ້າດິນ

ເຈ ື່ອນໄດ້ດີ ແລະ ມີການຄາດຄະເນທີື່ຖ ກຕ້ອງສູງພໍສົມຄວນ, ໃນທາງ

ກົງກຼັນຂ້າມກຼັນການບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແມ່ນເຫຼັນໄດ້ວ່າຍຼັງມີການ

ຄາດຄະເນທີື່ຜິດໃນຫ າຍຊຼຸດຂໍໍ້ມູນ ເຊິື່ງອາດຈະກໍໍ່ໃຫ້ເກີດຜົນກະທົບທີື່

ຕາມມາຢ່າງໃຫຍ່ຫ ວງໄດ້; ການຄົ້ນພົບນີ້ມີຄວາມສ າຄຼັນຕໍໍ່ການປັບປຸງ, 

ການພຼັດທະນາ, ເພີື່ມບາດກ້າວໃນການຍົກລະດຼັບລະບົບເຕ ອນໄພລ່ວງ

ໜ້າດິນເຈ ື່ອນໃນປະເທດເຮົາ ໂດຍສະເພາະໃນການເລ ອກໃຊ້ຜຼັນ
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 ຕາຕະລາງທີ 1. ຂໍໍ້ມູນທີື່ໃຊ້ເຂ້ົາໃນການທົດລອງ. 

ຂໍໍ້ມນູຊຼຸດທ ີ Rainfall 
(𝒎𝒎𝟑) 

Land slope(%) Soil Moisture1 (%) Soil Moisture2 (%) Vibration(g) 

1 49 5 29 16 3 
2 63 8 3 5 4 
3 63 1 32 10 0 
4 31 15 31 19 4 
5 56 17 35 0 2 
6 63 1 32 10 0 
7 31 15 31 19 4 
8 9 5 21 8 0 
9 25 5 18 8 4 
10 6 7 34 32 2 
11 25 47 14 35 2 
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12 5 57 28 9 3 
13 12 48 4 3 4 
14 137 31 20 55 6 
15 9 25 60 73 6 
16 75 37 5 39 5 
17 8 24 46 59 4 
18 62 25 34 35 4 
19 42 40 31 33 7 
20 125 24 8 76 0 
21 150 85 39 32 5 
22 131 73 43 31 7 
23 135 59 40 93 3 
24 75 88 55 85 4 
25 130 68 49 98 6 
26 41 63 86 81 5 
27 36 89 89 81 6 
28 147 79 7 77 4 
29 92 79 9 42 6 
30 112 84 35 33 5 

 ຕາຕະລາງທີ 2. ເກນຄວາມສ່ຽງ. 
ລ າດຼັບ ປະເພດ ນ າ້ໜຼັກ ນ າ້ໜຼັກທີື່ປບັປງຸໃໝ ່ ເກນຄວາມສຽ່ງ 

 
1 

 
Rainfall 
(𝑚𝑚3) 

15% 16.7% 
0-30 Low 
30-70 Medium 
>70 High 

 
2 

 
Land slope (%) 30% 33.3% 

0-20 Low 
20-40 Medium 
>40 High 

 
3 

 
Soil Moisture1(%) 

22% 24.4% 

0-30 Low 
30-35 Medium 
>35 High 

 
4 

 
Soil Moisture2 (%) 

0-30 Low 
30-35 Medium 
>35 High 

 
5 

 
Vibration (g) 23% 25.6% 

1-3 Low 
4-5 Medium 
>5 High 

ລວມ 90% 100% 

 ຕາຕະລາງທີ 3. ການປ່ຽນຄ່າ (Fuzzification). 
ຂໍໍ້ມນູຊຼຸດ

ທ ີ
 

Rainfall 
(𝒎𝒎𝟑) 

Land slope(%) 
Soil Moisture1 

(%) 
Soil Moisture2 

(%) 
Vibration 

(g) 
ສະຖານະ 

1 Medium Low Low Low Low Safe 
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2 Medium Low Low Low Medium Safe 
3 Medium Low Medium Low Low Safe 
4 Medium Low Medium Low Medium Safe 
5 Medium Low Medium Low Low Safe 
6 Medium Low Medium Low Low Safe 
7 Medium Low Medium Low Medium Safe 
8 Low Low Low Low Low Safe 
9 Low Low Low Low Medium Safe 
10 Low Low Medium Medium Low Safe 
11 Low High Low Medium Low Alert 
12 Low High Low Low Low Alert 
13 Low High Low Low Medium Alert 
14 High Medium Low High High Danger 
15 Low Medium High High High Safe 
16 High Medium Low High Medium Alert 
17 Low Medium High High Medium Safe 
18 Medium Medium Medium Medium Medium Alert 
19 Medium Medium Medium Medium High Alert 
20 High Medium Low High Low Alert 
21 High High High Medium Medium Danger 
22 High High High Medium High Danger 
23 High High High High Low Danger 
24 High High High High Medium Danger 
25 High High High High High Danger 
26 Medium High High High Medium Danger 
27 Medium High High High High Danger 
28 High High Low High Medium Danger 
29 High High Low High High Danger 
30 High High Medium Medium Medium Danger 

 

 ຕາຕະລາງທີ 4. ປຽບທຽບລະຫວ່າງຂໍໍ້ມູນຊຼຸດທີ 1- 30 ໂດຍວິທກີານທີື່ນ າໃຊ ້ຟັດຊີ ໂລຈິກ ແລະ ວິທີການບໍໍ່ນ າໃຊ ້ຟັດຊີ ໂລຈິກ. 

ຂໍໍ້ມນູຊຼຸດທ ີ ຂໍໍ້ມນູຈງິ ນ າໃຊ ້ຟດັຊ ີໂລຈກິ ບໍໍ່ນ າໃຊ ້ຟດັຊ ີໂລຈກິ 
1 Safe Safe Safe 
2 Safe Safe Safe 
3 Safe Safe Safe 
4 Safe Safe Safe 
5 Safe Safe Safe 
6 Safe Safe Safe 
7 Safe Safe Safe 
8 Safe Safe Safe 
9 Safe Safe Safe 
10 Safe Safe Alert 
11 Alert Alert Safe 
12 Alert Alert Safe 
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13 Alert Alert Safe 
14 Alert Danger Danger 
15 Alert Safe Alert 
16 Alert Alert Alert 
17 Alert Safe Alert 
18 Alert Alert Safe 
19 Alert Alert Alert 
20 Alert Alert Alert 
21 Danger Danger Danger 
22 Danger Danger Danger 
23 Danger Danger Danger 
24 Danger Danger Danger 
25 Danger Danger Danger 
26 Danger Danger Danger 
27 Danger Danger Danger 
28 Danger Danger Danger 
29 Danger Danger Danger 
30 Danger Danger Danger 

 

 ຕາຕະລາງທີ 5. ປຽບທຽບປະສິດທິພາບຂອງວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກ ແລະ ວິທີການບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ ດ້ວຍ Accuracy, 
Precision, Recall ແລະ F1-Score. 

ຕວົຊີວ້ຼັດ ນ າໃຊ ້ຟດັຊ ີໂລຈກິ ບໍໍ່ນ າໃຊ ້ຟດັຊ ີໂລຈກິ 

Accuracy 90.0% 83.3% 
Precision 91.4% 87.4% 
Recall 90.0% 83.3% 

F1-Score 89.5% 81.7% 
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 ຮູບທີ 1. ການຄິດໄລ່ຫາຄ່າຕົວຊີ້ວຼັດໃນການປະເມີນຄວາມຖ ກຕ້ອງແບບ Confusion Matrix ຂອງວິທີການນ າໃຊ້ ຟັດຊີ ໂລຈິກ 
 

 
 

 ຮູບທີ 2. ການຄິດໄລ່ຫາຄ່າຕົວຊີ້ວຼັດໃນການປະເມີນຄວາມຖ ກຕ້ອງແບບ Confusion Matrix ຂອງວິທີການບໍໍ່ນ າໃຊ້ ຟັດຊີ ໂລຈິກ 

 

 
 

ຄ່າທ ່ ຄາດຄະເນ 

ຄ່າທ ່ ຄາດຄະເນ 
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