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Abstract

Customer churn poses a significant challenge in the telecommunications
industry, as it directly impacts both revenue and long-term customer retention.
This study leverages real-world customer data from TPLUS Digital to evaluate
the effectiveness of machine learning techniques in predicting customer churn.
The research aims to assess the learning speed and testing capability of machine
learning models and compare their performance in churn prediction. Two widely
used models Logistic Regression (LR) and Random Forest (RF) were employed
and evaluated using various performance metrics, including training and testing
time, AUC, Precision, Recall, and F1-Score. The dataset was divided into
training and testing sets using multiple ratios: 70%-30%, 80%-20%, and 90%-
10%. Results show that Random Forest outperforms Logistic Regression in
identifying customers likely to churn and achieves higher overall accuracy.
However, Logistic Regression exhibited faster training times and more consistent
performance on imbalanced datasets. This study provides valuable insights into
the application of machine learning for churn prediction in the
telecommunications sector and offers a foundation for developing effective
customer retention strategies.
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