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Abstract  

 The purposes of this research are to find formulas for 

some restricted partition functions ( | )p n S  valid for all positive 

integers n and for some finite subset S of the natural numbers. 

In particular, the method of Andrews and Eriksson is modified 

for some conditions of elements in the set ,S  where 

{1,2,3,..., }S m  and using the generating function, partial 

fraction expansion, q partial fractions, the greatest integer 

function and the nearest integer function. The results of this 

research found that finding formulas for some partition 

functions ( | ) ( |parts in )p n S p n S can be discovered as the set 

of prime numbers from 2 to 7  and the set of even numbers from 

2 to 8.  

 

Keywords: Generating Function, Restricted Partition 

Functions and q -Partial Fractions. 

 

 

1. Introduction 

A partition of the positive integers n  is a 

way of writing n  as a sum of positive integers      

where the order of the integers in the sum does not 

matter. We specify a partition n when we write  it as 

a sum of positive integers such that  

1 2 ... .   rn n n n  The integers  1 2, ,..., rn n n  are 

called   the parts of partition .n  The number of 

different partitions of n  is denoted by ( ).p n  We 

call ( )p n  the partition functions. (0) 1p  is 

defined which makes sense because there is exactly 

one partition of the integer 0,  the empty partition 

that has no parts. For example, since 10  can be 

expressed as     the sum of positive integers by: 

10, 9 1, 8 2, 8 1 1, 7 3, 7 2 1, 7 1 1 1, 6 4, 6 3 1,              

6 2 2, 6 2 1 1, 6 1 1 1 1,         5 5, 5 4 1, 5 3 2, 5 3 1 1, 5 2 2 1,           5 2 1 1 1,   

5 1 1 1 1 1, 4 4 2, 4 4 1 1, 4 3 3, 4 3 2 1, 4 3 1 1 1,                   4 2 2 2,   4 2 2  

1 1,  4 2 1 1 1 1, 4 1 1 1 1 1 1, 3 3 3 1,              3 3 2 2, 3 3 2 1 1,       3 3 1 1 1     

1, 3 2 2 2 1, 3 2 2 1 1 1, 3 2 1 1 1 1 1, 3 1 1 1 1 1 1 1,                       2 2 2 2 2,   

2 2 2 2 1 1, 2 2 2 1 1 1 1, 2 2 1 1 1 1 1 1,                   2 1 1 1 1 1 1 1 1         and 1  

1 1 1 1 1 1 1 1 1.         As a result,  

(10) 42.p
A restricted partition is a partition in which 

some kind of restriction is imposed upon the parts. 

In this directions, restricted partitions are discussed 

in H. L. Alder (1969 & 1979) and G. E. Andrew and 

E. Kimmo (2004). 

In 2004, Andrews and Eriksson discovered  
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formulas for some restricted partition functions 

( , ),p n m the number of partitions of n into parts 

less than or equal to ,m  for 1,2,3,4m  by using 

the generating functio 

2 3
0

1
( , ) ,

(1 )(1 )(1 ) (1 )






   

 n
m

n

p n m q
q q q q

                                   (1.1) 

 Where ( , ) ( | parts in{1,2,3,..., }).p n m p n m

 Therefore, the purpose of finding formulas for 

some ( |condition)p n  is interestingly studied by 

extended the results of Andrews and Eriksson and 

modified some conditions in the set of positive 

integers in this research.
 

2. Materials and Methods 

In this section, we give fundamental 

definitions concerning the generating function, q-

fraction, the greatest integer function and the nearest 

integer function are given to find formulas for some 

( | ),p n S  where is a finite subset of .  

 Definition 2.1  Let S  be a finite subset of 

 and ( | )p n S  denote the number of partitions of 

n into elements of S (or in other words, the parts of 

partitions belong to S ). Then the univariate 

generating function is given by: 

 0

1
( | ) ,

1



 




 
n

j
n j S

p n S q
q

  (2.1) 

 Definition 2.2 (Munagi, 2007). Let q-

fraction ( ) /(1 ) n sv q q  is called basic if it satisfies  

    deg( ) ( ), v n    (2.2) 

where  is the Euler phi function.  

 Definition 2.3 (Rosen, 2015). The greatest 

integer in a real number ,x  denoted by   x  is the 

largest integer less than or equal to .x  That is   x  

is the integer satisfying  

 
1.        x x x   (2.3) 

 Definition 2.4 (Andrews and Eriksson, 2004). 

Let x  be a positive real number and { }x  is defined 

to be the nearest integer to x  with the convention 

that for any ,n  

 
if is even1

1 if is odd.2

 
   

  

n n
n

n n
  (2.4) 

3. Results 

 In this section, some formulas for ( | )p n S  are 

found, whereS is a finite subset of .  

 Theorem 3.1 Let {0}. n  Then we 

have  

2 2 1
( |{2,3}) .

3 2

    
   

  

n n
p n  

Proof. By Eq. (2.1), we have  

  
2 3 2 2

0

1 1
( |{2,3})

(1 )(1 ) (1 ) (1 )(1 )





 
     

 n

n

p n q
q q q q q q

 

      
2 2

.
(1 ) 1 1 (1 )


   

    

A B C Dq E

q q q q q

 After solving the system of linear equations by expanding the ordinary partial fraction decomposition, 

(3.1) is obtained as below: 

  
2 2

0

1/ 6 1/ 4 1/ 4 1/ 3
( |{2,3}) .

(1 ) 1 1 1





   
    

 n

n

p n q
q q q q q

                             (3.1)  

 Next, each summand is transformed on the right-hand side into a sum of q-fractions (the first two 

fractions are already basic): 

  
2

1/ 4 (1 )(1/ 4) 1/ 4 1/ 2
and

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                        (3.2) 

  
2 2 3

1/ 3 (1 )(1/ 3) (1 ) / 2
.

1 (1 )(1 ) 1

 
 

     

q q

q q q q q q
                            (3.3) 

 Substituting the equations (3.2) and (3.3) into (3.1), we have 
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2 2 3

0

1/ 6 1/ 2 (1 ) / 3
( |{2,3}) .

(1 ) 1 1






  

  
 n

n

q
p n q

q q q
  

 By the binomial series formula of Andrews and Eriksson (2004), we have 

           
1

0

(1 ) , 1


 



 
   

 
 n m

n

n m
q q q

m
                        (3.4) 

  where 
( 1)( 2) ( ) ( )!

.
! ! !

     
  

 

n m n n n m n m

m m n m
 

 If 0,m  then 
0

1
, 1.

1





 


 n

n

q q
q

       (3.5) 

 Thus, 

  
2 2 3

0

1/ 6 1/ 2 (1 ) / 3
( |{2,3})

(1 ) 1 1






  

  
 n

n

q
p n q

q q q
 

      
2 3

0 0 0

11 1 1
.

16 2 3

  

  

  
   

 
  n n n

n n n

n q
q q q  

 By the formula of Andrews and Eriksson (2004), we have 

  
2

/ 2

0 0

1
( 1) 2

2

 

 

   
    

  
 n n

n n
n n

n
a q a n q                (3.6) 

  where 
0 if is odd1

( 1) 2
1 if is even.2

 
    

  

nn
n

n
 

Then,  

 
3 3 1

0 0 0 0

11 1 1 1 1
( |{2,3}) ( 1) 2

16 2 2 3 3

   


   

       
          

     
   n n n n n

n n n n

n n
p n q q n q q q  

     
3 3 1

0 0 0

1 ( 1)! ( 1) 1 1 1

6 ! 2 2 3 3

  


  

         
          

      
  n n n n

n n n

n n n
q q q q

n
 

     
3 3 1

0 0 0

( 1) ( 1) 1 1 1

6 2 2 3 3

  


  

         
          

      
  n n n

n n n

n n n
q q q  

     
0 3| 3| 1

2 2 1 1 1

3 2 3 3



 

         
        

      
  n n n

n n n

n n
q q q  

     
0

2 2 1
( ) ,

3 2





    
     

  
 n

n

n n
n q  

    where 

1/ 3 if 0(mod3)

( ) 1/ 3 if 1(mod3)

0 if 2(mod3).




   
 

n

n n

n

 

 ( ) n  can be seen that it takes only the values 
1 1

, 0, .
3 3

  Thus, the below result is concluded by the 

uniqueness of Maclaurin series expansion that 

    
2 2 1

( |{2,3}) ( )
3 2

  
    

 

n n
p n n . 

 Note that ( |{2,3})p n  is an integer and 
1

( ) .
2

 n   
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Therefore,  

    
2 2 1

( |{2,3}) .
3 2

    
   

  

n n
p n   

This completes the proof. 

 Theorem 3.2 Let {0} n  and then  

( 1)( 9)
( |{2,3,5}) ( ) ,

60

  
  
 

n n
p n n  

   where 
1 if 0(mod5)and (2 | or 3 | ( 1)),

( )
0 otherwise.

  
  



n n n
n  

 Proof. By Eq. (2.1), then 

     
2 3 5

0

1
( |{2,3,5})

(1 )(1 )(1 )






  

 n

n

p n q
q q q

 

    
3 2 2 3 4

1

(1 ) (1 )(1 )(1 )


       q q q q q q q q
 

    

3 2

3 2 2 2 3 4
.

(1 ) (1 ) 1 1 1 1

   
     

         

A B C D Eq F Gq Hq Iq J

q q q q q q q q q q
 

 After solving the system of linear equations by expanding the ordinary partial fraction decomposition, 

then obtaining 

 
3 2

0

1/ 30 7 / 60 77 / 360 1/8
( |{2,3,5})

(1 ) (1 ) 1 1





   
   

 n

n

p n q
q q q q

  

         

3 2

2 2 3 4

(1 ) / 9 ( 2) / 5
.

1 1

   
 

     

q q q q

q q q q q q
                           (3.7)  

 Next, each summand is transformed on the right-hand side into a sum of q-fractions (the first three 

fractions are already basic): 

  
2

1/8 (1 )(1/8) 1/8 1/ 4

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                                                  (3.8) 

  
2 2 3

(1 ) / 9 (1 )(1 ) / 9 1/ 9 / 3

1 (1 )(1 ) 1 1

  
  

      

q q q q

q q q q q q q
  and                                             (3.9) 

 

3 2 3 2 2 3

2 3 4 2 3 4 5

( 2) / 5 (1 )( 2) / 5 1/ 5 (3 ) / 5
.

1 (1 )(1 ) 1 1

         
  

          

q q q q q q q q q

q q q q q q q q q q q
              (3.10) 

 Substituting the equations (3.8), (3.9) and (3.10) into (3.7) and then 

 

2 3

3 2 3 5
0

1/ 30 7 / 60 / 3 (3 ) / 5
( |{2,3,5}) .

(1 ) (1 ) 1 1





 
   

   
 n

n

q q q
p n q

q q q q
 

 By Eq. (3.4) and Eq. (3.5), then the below result is obtained 

 

2

0 0 0 0

2 3
3 5

0 0

2 11 7 1
( |{2,3,5})

2 130 60 4

3

3 5

   

   

 

 

    
     

   

 
 

   

 

n n n n

n n n n

n n

n n

n n
p n q q q q

q q q
q q

 

  

2

0 0 0

1 ( 2)! 7 ( 1)! 1

30 !2! 60 !1! 4

  

  

    
       

   
  n n n

n n n

n n
q q q

n n
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2 3
3 1 5

0 0

1 3

3 5

 


 

 
  n n

n n

q q
q q  

          
0 2| 3| 1

5| 5| 2 5| 3

( 1)( 9) 1 1

60 4 3

3 1 1

5 5 5



 

 

       
       

     

     
       

     

  

  

n n n

n n n

n n n

n n n

n n
q q q

q q q

 

         
0

( 1)( 9)
( ) ,

60





  
   

 
 n

n

n n
n q                      (3.11) 

 Where 1 2 3( ) ( ) ( ) ( )   n f n f n f n  and  

  1

1/ 4 if 0(mod 2)
( )

0 if 1(mod 2)


 



n
f n

n
 

  2

1/ 3 if 1(mod3)
( )

0 if 0,2(mod3)

 
 



n
f n

n
 

  3

3/ 5 if 0(mod5)

( ) 1/ 5 if 2,3(mod5)

0 if 1,4(mod5).




 
 

n

f n n

n

 

 There are 12 possible values of ( ), n  namely: 

17 1 9 1 2 3 7 4 1 1 31
, , , , , , 0, , , , , ,

20 3 20 12 15 5 60 15 4 5 60

  
 

With  

 
1

( )
2

 n  if and only if 0(mod5) and (2 | or 3 | ( 1)). n n n  

 By comparing the coefficients of the power series in Eq. (3.11), then 

( 1)( 9)
( |{2,3,5}) ( ).

60

 
 
n n

p n n  

Define  

1 if 0(mod5)and (2 | or 3 | ( 1)),
( )

0 otherwise.

  
  



n n n
n  

Since ( |{2,3,5})p n  is a non-negative integer, then the below result is obtained 

  
( 1)( 9)

( |{2,3,5}) ( ) .
60

  
   
 

n n
p n n  

 This completes the proof. 

 Theorem 3.3 Let {0} n  and then 

       

2( 1)(2 49 656) 1 1
( |{2,3,5,7}) ( ) ,

2520 4 2

     
     

  

n n n n
p n n  

   where 
1 if 1,6(mod 7)and ( 2(mod3) or 4(mod5)),

( )
0 otherwise.

     
  



n n n
n  

 Proof. By Eq. (2.1) and then 

2 3 5 7
0

1
( |{2,3,5,7})

(1 )(1 )(1 )(1 )






   

 n

n

p n q
q q q q
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4 2 2 3 4 2 3 4 5 6

1

(1 ) (1 )(1 )(1 )(1 )


             q q q q q q q q q q q q q q
 

                     

4 3 2

3 2 5 4 3 2

2 2 3 4 2 3 4 5 6

(1 ) (1 ) (1 ) 1 1

1 1 1

    
    

        
  

           

A B C D E

q q q q q

Fq G Hq Iq Jq K Lq Mq Nq Pq Qq R

q q q q q q q q q q q q

 

 After solving the system of linear equations by expanding the ordinary partial fraction decomposition, 

the below result is obtained 

 
4 3 2 2

0

1/ 210 13/ 420 251/1520 23/112 1/16 1/ 9
( |{2,3,5,7})

(1 ) (1 ) (1 ) 1 1 1





     
      

 n

n

p n q
q q q q q q q

 

            

2 2 3 5

2 3 4 2 3 4 5 6

(1 ) / 5 (2 2 ) / 7

1 1

    
 

         

q q q q q

q q q q q q q q q q
            (3.12) 

 Next, each summand is transformed on the right-hand side into a sum of q-fractions (the first four 

fractions are already basic): 

  
2

1/16 (1 )(1/16) 1/16 1/8

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                                                    (3.13) 

  
2 2 3

1/ 9 (1 ) / 9 (1 ) / 9

1 (1 )(1 ) 1

 
 

     

q q

q q q q q q
                                                  (3.14) 

  

2 2 3

2 3 4 5

(1 ) / 5 (1 ) / 5

1 1

   


    

q q q q

q q q q q
                     (3.15) 

          

2 3 5 2 3 4 5

2 3 4 5 6 7

(2 2 ) / 7 1/ 7 (3 2 2 ) / 7

1 1 1

        
 

       

q q q q q q q q

q q q q q q q q
            (3.16)

 Substituting the equations (3.13), (3.14), (3.15) and (3.16) into (3.12) then 

 
4 3 2 2 3

0

1/ 210 13/ 420 251/1520 1/8 (1 ) / 9
( |{2,3,5,7})

(1 ) (1 ) (1 ) 1 1






    

    
 n

n

q
p n q

q q q q q
 

            

2 3 2 3 4 5

5 7

(1 ) / 5 (3 2 2 ) / 7
.

1 1

      
 

 

q q q q q q q

q q
 

 By Eq. (3.4), Eq. (3.5) and Eq. (3.6), then the below result is obtained 

2

0 0 0 0 0

3 2 11 13 250 1
( |{2,3,5,7})

3 2 1210 420 2520 8

    

    

       
        

     
    n n n n n

n n n n n

n n n
p n q q q q q  

         

2 3 2 3 4 5
3 5 7

0 0 0

1 1 3 2 2

9 5 7

  

  

       
    n n n

n n n

q q q q q q q q
q q q

 

    

0 0 0

3 3 1 5

0 0 0 0

1 ( 3)! 13 ( 2)! 251 ( 1)!

120 !3! 240 !2! 2520 !1!

1 1 1 1 1
( 1) 2

8 2 9 9 5

  

  

   


   

       
          

     

          
            

        

  

   

n n n

n n n

n n n n

n n n n

n n n
q q q

n n n

n
n q q q q

 

         

5 1 5 2 5 3 7 7 2

0 0 0 0 0

7 3 7 4 7 5

0 0 0

1 1 1 3 1

5 5 5 7 7

2 1 2

7 7 7

    
   

    

  
  

  

          
             

         

     
       

     

    

  

n n n n n

n n n n n

n n n

n n n

q q q q q

q q q
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2

0

3| 3| 1 5| 5| 1

5| 2 5| 3 7| 7| 2

( 1)(2 49 341) ( 1) 1 1

2520 8 4 2

1 1 1 1

9 9 5 5

1 1 3 1

5 5 7 7

2

7





 

  

        
     

   

        
          

       

       
          

       








   

   

n

n

n n n n

n n n n

n n n n

n n n n

n n n n n
q

q q q q

q q q q

7| 3 7| 4 7| 5

1 2

7 7  

    
      

    
  n n n

n n n

q q q

 

  

2

0

( 1)(2 49 656) 1 1
( ) ,

2520 4 2





     
     

  
 n

n

n n n n
n q              (3.17) 

Where 1 2 3( ) ( ) ( ) ( )   n f n f n f n  and  

  1

1/ 9 if 0(mod3)

( ) 1/ 9 if 1(mod3)

0 if 2(mod3),




  
 

n

f n n

n

 

  2

1/ 5 if 0,2(mod5)

( ) 1/ 5 if 1,3(mod5)

0 if 4(mod5),




  
 

n

f n n

n

 

  3

3/ 7 if 0(mod 7)

1/ 7 if 2(mod 7)

( ) 2 / 7 if 3,5(mod 7)

1/ 7 if 4(mod 7)

0 if 1,6(mod 7).







 
 




n

n

f n n

n

n

 

There are 46 possible values of ( ), n  namely: 

233 14 12 62 61 17 4 163 1 16 118 12 188 3
, , , , , , , , , , , , , ,

315 45 35 315 63 35 45 315 5 63 315 35 315 7

    
 

    
14 53 73 11 1 107 4 2 25 17 3 37 143 8 2

, , , , , , , , , , , , 0, , , ,
45 315 315 63 5 315 45 35 63 315 35 315 315 35 35

    
 

1 22 73 2 1 143 20 17 8 2 53 1 163 1 2 34
, , , , , , , , , , , , , , ,

9 35 315 63 7 315 63 315 35 7 315 9 315 7 63 63

   
 

with  

 
1

( )
2

 n  if and only if 1,6(mod7) and ( 2(mod3) or 4(mod5)).    n n n  

 By comparing the coefficients of the power series in Eq. (3.17), the below result is obtained 

  

2( 1)(2 49 656) 1 1
( |{2,3,5,7}) ( ).

2520 4 2

    
    

 

n n n n
p n n  

Define  

  
1 if 1,6(mod 7)and ( 2(mod3) or 4(mod5)),

( )
0 otherwise.

     
  



n n n
n  

 Since ( |{2,3,5,7})p n  is a non-negative integer, then this below result is presented 
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2( 1)(2 49 656) 1 1
( |{2,3,5,7}) ( ) .

2520 4 2

     
     

  

n n n n
p n n  

 This completes the proof. 

 Theorem 3.4 Let {0} n  and than 

       
2 1 1 1 1

( |{2,4}) .
2 2 2 2 4 2

              
            
          

n n n n n
p n  

Proof. By Eq. (2.1) and then 

  
2 4 2 2 2

0

1 1
( |{2,4})

(1 )(1 ) (1 ) (1 ) (1 )





 
    

 n

n

p n q
q q q q q

 

        
2 2 2

.
(1 ) 1 (1 ) 1 1


    

    

A B C D Eq F

q q q q q
 

 After solving the system of linear equations by expanding the ordinary partial fraction decomposition, 

(3.18) is obtained 

   
2 2 2

0

1/8 1/ 4 1/8 1/ 4 1/ 4
( |{2,4}) .

(1 ) 1 (1 ) 1 1





    
    

 n

n

p n q
q q q q q

                        (3.18)  

 Next, each summand is transformed on the right-hand side into a sum of q-fractions (the first two 

fractions are already basic): 

  
2

1/ 4 (1 )(1/ 4) 1/ 4 1/ 2

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                                                   (3.19) 

  

2

2 2 2 2 4

1/ 4 (1 ) / 4 1/ 4 1/ 2

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                                                  (3.20) 

  

2

2 2 2 2 4 2 2

1/8 (1 ) /8 1/8 1/ 4 1/ 2

(1 ) (1 ) (1 ) (1 ) 1 (1 )

 
   

     

q

q q q q q q
                                     (3.21) 

 Substituting the equations (3.19), (3.20) and (3.21) into (3.18), we have 

  
2 2 4

0

1/ 2 1/ 2
( |{2,4}) .

(1 ) 1





 
 

 n

n

p n q
q q

 

 By Eq. (3.4) and Eq. (3.5), the below result is obtained 

  
2 4 2 4

0 0 0 0 0

11 1 1 1
( |{2,4}) ( 1) .

12 2 2 2

    

    

 
     

 
    n n n n n

n n n n n

n
p n q q q n q q  

 By Eq. (3.6), then 

  
2

/ 2

0 0

1
( 1) 2 ,

2

 

 

   
    

  
 n n

n n
n n

n
a q a n q   

Where 
0 if is odd1

( 1) 2
1 if is even.2

 
    

  

nn
n

n
 

 By similar reasons, from the above one then (3.12) is obtained 

   
4

/ 4

0 0

1
,

4 4

 

 

     
     

    
 n n

n n
n n

n n
a q a q                 (3.22) 

   where 
1 if 0(mod 4),1

0 if 0(mod 4).4 4

   
          

nn n

n
 

Then, 
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0 0

0

1 1
( |{2,4}) 1 ( 1) 2

2 2 2

1 1

2 4 4

 

 





      
       

     

      
      

     

 



n n

n n

n

n

n n
p n q n q

n n
q

 

      
0

2 1 1 1 1

2 2 2 2 4 4





               
             

           
 n

n

n n n n n
q                      (3.23) 

 By comparing the coefficients of the power series in Eq. (3.23), the below result is obtained 

  
2 1 1 1 1

( |{2,4}) .
2 2 2 2 4 4

              
            
          

n n n n n
p n  

This completes the proof. 

 Theorem 3.5 Let {0} n  and then 

       

2( 6) 1 1
( |{2,4,6}) .

24 2 2

      
    

   

n n n
p n  

Proof. By Eq. (2.1) and then 

  
2 4 6

0

1
( |{2,4,6})

(1 )(1 )(1 )






  

 n

n

p n q
q q q

 

         
3 3 2 2 2

1

(1 ) (1 ) (1 )(1 )(1 )


      q q q q q q q
 

         

3 2 3 2

2 2 2

(1 ) (1 ) 1 (1 ) (1 ) 1

.
1 1 1

     
     

  
  

    

A B C D E F

q q q q q q

Gq H Iq J Kq L

q q q q q

 

 After solving the system of linear equations by expanding the ordinary partial fraction decomposition, 

(3.24) is obtained 

  
3 2 3 2

0

1/ 48 3/ 32 61/ 288 1/ 4 3/ 32 61/ 288
( |{2,4,6})

(1 ) (1 ) 1 (1 ) (1 ) 1





     
     

 n

n

p n q
q q q q q q

 

         
2 2 2

1/8 (2 ) /18 (2 ) /18
.

1 1 1

 
  

    

q q

q q q q q
              (3.24) 

 Next, each summand is transformed on the right-hand side into a sum of q-fractions (the first three 

fractions are already basic): 

  

2

2 2 2 2 4

1/8 (1 )(1/ 4) 1/8 1/ 4

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                                        (3.25) 

  
2

61/ 288 (1 )(61/ 288) 61/ 288 61/144

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                                            (3.26) 

  
2 2 3

(2 ) /18 (1 )(2 )(1/18) 1/18 1/ 6

1 (1 )(1 ) 1 1

   
  

      

q q q

q q q q q q q
                  (3.27) 

  

2

2 2 2 2 2 2 2

3/ 32 (1 ) (3/ 32) 3/ 32 3/8 3/16

(1 ) (1 ) (1 ) (1 ) (1 ) 1

 
   

     

q

q q q q q q
                 (3.28) 

  

3

3 3 3 3 2 3 2 2

1/ 48 (1 ) (1/ 48) 1/ 48 1/ 6 1/8

(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

 
   

     

q

q q q q q q
                 (3.29) 
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2 2 2 3 6

(2 ) /18 (2 )(1 )(1/18) 1/18 1/ 9 1/ 6 1/ 3

1 (1 )(1 ) 1 1 1 1

  
    

        

q q q

q q q q q q q q q
                (3.30) 

 Substituting the equations (3.25), (3.26), (3.27), (3.28), (3.29) and (3.30) into (3.24), then 

  
2 3 2 2 4 6

0

1/ 6 1/ 4 1/ 4 1/ 3
( |{2,4,6})

(1 ) (1 ) 1 1





   
   

 n

n

p n q
q q q q

 is obtained. 

 By Eq. (3.4) and Eq. (3.5), then 

 
2 2 4 6

0 0 0 0 0

2 11 1 1 1
( |{2,4,6})

2 16 4 4 3

    

    

    
      

   
    n n n n n

n n n n n

n n
p n q q q q q    

                     
2 4 6

0 0 0

( 1)( 5) 1 1

12 4 3

  

  

  
   

 
  n n n

n n n

n n
q q q  

         

2
2 4 6

0 0 0

6 9 4 1 1

12 12 4 3

  

  

  
    

 
  n n n

n n n

n n
q q q  

         

2
2 4 2 6

0 0 0 0

( 3) 1 1 1
.

12 4 3 3

   

   

     
        

    
   n n n n

n n n n

n
q q q q  

By Eq. (3.6). Then, 

 

2

0 0 2| 4| 6|

( 6) 1 1 1 1
( |{2,4,6}) ( 1) 2

48 2 3 4 3

 

 

            
             

         
    n n n n n

n n n n n

n n
p n q n q q q q  

          

2

0

( 6) ( 1) 1
( ) ,

48 2 2





      
      

   
 n

n

n n n
n q        (3.31) 

 where 1 2 3( ) ( ) ( ) ( )   n f n f n f n  and  

  1

1/ 3 if 0(mod 2)
( )

0 if 1(mod 2),

 
 



n
f n

n
 

  2

1/ 4 if 0(mod 4)
( )

0 if 1,2,3(mod 4),


 



n
f n

n
 

  3

1/ 3 if 0(mod 6)
( )

0 if 1,2,3,4,5(mod 6).


 



n
f n

n
 

 We see that ( ) n  takes only the values 

1 1 1
, , 0, .

12 3 4

 
 

 Now the below result can be concluded by the uniqueness of Maclaurin series expansions as 

2( 6) ( 1) 1
( |{2,4,6}) ( ).

48 2 2

     
     

  

n n n
p n n  

By ( |{2,4,6})p n  is a positive integer and 
1

( ) .
2

 n  

Therefore,  

  

2( 6) ( 1) 1
( |{2,4,6}) .

48 2 2

      
    

   

n n n
p n  

This completes the proof. 

 Theorem 3.6 Let {0} n  and then 
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2( 2)( 14) 128 1 1
( |{2,4,6,8})

576 2 2

         
    

    

n n n n
p n  

          
6 1

.
32 4 4

        
       
      

n n n
 

 Proof. By Eq. (2.1), then 

2 4 6 8
0

1
( |{2,4,6,8})

(1 )(1 )(1 )(1 )






   

 n

n

p n q
q q q q

 

             
4 4 2 2 4 2 2

1

(1 ) (1 ) (1 ) (1 )(1 )(1 )


       q q q q q q q q
 

            

4 3 2 4 3 2

3 2

2 2 2 2 2 4

(1 ) (1 ) (1 ) 1 (1 ) (1 ) (1 ) 1

.
(1 ) 1 1 1 1

       
       

      
    

      

A B C D E F J H

q q q q q q q q

Iq J Kq L Mq N Oq P Qq Rq Sq T

q q q q q q q

 

 After solving the system of linear equations by expanding the ordinary partial fraction decomposition, 

the below result is obtained 

  
4 3 2 4 3

0

1/ 384 1/ 48 187 / 2304 51/ 256 1/ 384 1/ 48
( |{2,4,6,8})

(1 ) (1 ) (1 ) 1 (1 ) (1 )





     
     

 n

n

p n q
q q q q q q

 

      
2 2 2 2 2 2 4

187 / 2304 51/ 256 1/ 32 1/8 1/18 1/18 1/8

(1 ) 1 (1 ) 1 1 1 1
      

        q q q q q q q q q
            (3.32) 

 Next, each summand is transformed on the right-hand side into a sum of q-fractions (the first four 

fractions are already basic): 

 

2

2 2 2 2 4

1/8 (1 )(1/8) 1/8 1/ 4

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                                        (3.33) 

 

4

4 4 4 4 8

1/8 (1 )(1/8) 1/8 1/ 4

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
                        (3.34) 

 
2 2 3

1/18 (1 )(1/18) (1 ) /18

1 (1 )(1 ) 1

 
 

     

q q

q q q q q q
                    (3.35) 

 
2

51/ 256 (1 )(51/ 256) 51/ 256 51/128

1 (1 )(1 ) 1 1

 
  

    

q

q q q q q
               (3.36) 

 

3

3 3 3 3 2 2 2 3

1/ 48 (1 ) (1/ 48) 1/ 48 1/8 1/ 6

(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

 
   

     

q

q q q q q q
                      (3.37) 

 

2 2

2 2 2 2 2 2 2 2 4 2 4

1/ 32 (1 ) (1/ 32) 1/ 32 1/8 1/16

(1 ) (1 ) (1 ) (1 ) (1 ) 1

 
   

     

q

q q q q q q
              (3.38) 

 

4

4 4 4 4 2 4 2 3 2 2

1/ 384 (1 ) (1/ 384) 1/ 384 1/ 24 1/ 24 1/192

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )

 
    

      

q

q q q q q q q
             (3.39) 

 

2

2 2 2 2 2 2 2

187 / 2304 (1 ) (187 / 2304) 187 / 2304 187 /1152 187 / 576

(1 ) (1 ) (1 ) (1 ) 1 (1 )

 
   

     

q

q q q q q q
            (3.40) 

 

3

2 2 3 3 3 6

1/18 (1 )(1/18) (1 )(1 )(1/18) ( 1 ) /18 (1 ) / 9

1 (1 )(1 ) (1 )(1 ) 1 1

     
   

        

q q q q q

q q q q q q q q q
             (3.41) 



SONGVILAY et al. (2021). Souphanouvong Journal of Multidisciplinary Research and Development 

ISSN 2521-0653. Volume 7. Issue 2. July – December 2021. Page 126 - 139 

137 

 Substituting the equations (3.33), (3.34), (3.35), (3.36), (3.367), (3.38), (3.39), (3.40) and (3.41) into 

(3.32), then 

 
2 4 2 3 2 2 4 2 2 3

0

1/ 24 1/8 25 /144 1/8 1/ 9 / 9
( |{2,4,6,8})

(1 ) (1 ) (1 ) (1 ) 1 1





     
     

 n

n

q
p n q

q q q q q q
 

            
4 6 8

1/16 (1 ) / 9 1/ 4

1 1 1


  

  

q

q q q
 id obtained. 

By Eq. (3.4) and Eq. (3.5) and following that 

 

2 2 2

0 0 0 0

4 2 3 1 4 6

0 0 0 0 0

6 1 8

0 0

3 2 11 1 25
( |{2,4,6,8})

3 2 124 4 144

11 1 1 1 1

18 9 9 16 9

1 1

9 4

   

   

    


    

 


 

       
       

     

 
     

 

 

   

    

 

n n n n

n n n n

n n n n n

n n n n n

n n

n n

n n n
p n q q q q

n
q q q q q

q q

 

            

2
2 4

0 0

3| 1 8| 6| 6| 1

( 1)( 7) 1 1 1

144 9 8 16

1 1 1 1
.

9 4 9 9

 

 

 

    
      

  

       
           

       

 

   

n n

n n

n n n n

n n n n

n n n
q q

q q q q

 

By Eq. (3.6) and Eq. (3.22), then 

 

2

0 0

0

( 2)( 14) 128 1 1
( |{2,4,6,8})

576 2 2

6 1
( ) ,

32 4 4

 

 





         
     

    

         
         

       

 



n n

n n

n

n

n n n n
p n q q

n n n
n q

 

 where 1 2 3( ) ( ) ( ) ( )   n f n f n f n  and  

  1

1/ 9 if 1(mod3)
( )

0 if 0,2(mod3),

 
 



n
f n

n
 

  2

1/ 9 if 0,1(mod 6)
( )

0 if 2,3,4,5(mod 6),


 



n
f n

n
 

  3

1/ 4 if 0(mod8)
( )

0 if 1,2,3,4,5,6,7(mod8).


 



n
f n

n
 

 We see that ( ) n  can be seen that it takes only the values 

1 1 1 5 13
, 0, , , , .

9 9 4 36 36


 

 Now, the below result is concluded by the uniqueness of Maclaurin series expansions as  
2( 2)( 14) 128 1 1

( |{2,4,6,8})
576 2 2

6 1
( ).

32 4 4

        
    

   

        
        
      

n n n n
p n

n n n
n

 

Since ( |{2,4,6,8})p n  is a positive integer and 
1

( ) .
2

 n   Therefore, 
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2( 2)( 14) 128 1 1
( |{2,4,6,8})

576 2 2

6 1
.

32 4 4

         
    

    

        
       
      

n n n n
p n

n n n
 

 This completes the proof. 

4. Discussion 

4.1  The results of this research are close to the 

research of G. E. Andrews and E. Kimmo (2004), 

who studied formulas for partition functions and 

obtained the formulas for ( , )p n m , the number of 

partitions of n  into parts less than or equal to ,m  

for 1,2,3,4.m   In this research, similar result 

found in this research is to use the generating 

function, partial fractions decomposition, binomial 

series, summation of the geometric series and 

uniqueness of the Maclaurin series expansions, 

however, the main results of this research are 

difference because some relevant theories such as 

- fractions,q  the greatest integer function, the 

nearest integer function and congruent are used to 

find formulas for some partition functions ( | ),p n S  

where S  is a finite subset of  that is, the set of 

prime numbers from 2  to 7 and the set of even 

numbers from 2  to 8.  

4.2 The results of this research are close to the 

research of M. S. Ladan, D. Singh, and Y. Tella 

(2018), who studied the extension of formulas for 

partition functions of G. E. Andrews and E. 

Kimmo (2004), for 5,6,7,8,9,10,11.m  Similar 

result found in this research is to use the generating 

function, partial fractions decomposition to obtain 

power series expansions, however, the main results 

of this research are difference because some relevant 

theories such as - fractions,q  the greatest integer 

function, the nearest integer function, binomial 

series, summation of the geometric series, congruent 

and uniqueness of the Maclaurin series expansions 

are used to find formulas for some partition 

functions ( | ),p n S where S is the set of prime 

numbers from 2 to 7 and the set of even numbers 

from 2 to 8. 

4.3 The results of this research are close to the 

research of Augustine O. Munagi (2007),  who 

studied the Computation of q-Partial Fractions 

and extended the results of the research of P.A. 

MacMahon (1960) and A. Cayley (1898) for 

( , )p n m , where 2,3m  and discovered the 

formulas for ( , )p n m , where 4,5.m  Similar 

result found in this research is to use the generating 

function,  partial fractions decomposition and some 

definitions of the q-Partial ( ) /(1 ) n sv q q  is called 

basic if it satisfies degree( ) ( ), v n  where  is 

Euler phi-function and the q-partial fraction 

decomposition of the q-fraction ( )A q  is a represen-

tation of ( )A q  as a finite sum of basic q-fractions 

with distinct denominators, however, the main 

results of this research are difference because some 

relevant theories such as the greatest integer 

function, the nearest integer function, binomial 

series, summation of the geometric series, congruent 

and uniqueness of the Maclaurin series expansions 

to find formulas for ( | ),p n S  where S is the set of 

prime numbers and set of even numbers, that is,   

{2,3}, {2,3,5}, {2,3,5,7}  S S S  and 

{2,4}, {2,4,6}, {2,4,6,8}  S S S  

respectively. 

5. Conclusion 

 The main objective of this study of some new 

partition function concerning restricted partition 

valid for all positive integers n of the general type: 

( | ) ( |parts in )p n S p n S can be studied by using 

the method of Andrews and Eriksson (2004), the 

generating functions and q-fractions are the tools to 

find formulas for some restricted partition functions. 

The following results is obtained 

5.1 Let {0} n  and then 

  
2 2 1

( |{2,3}) .
3 2

    
   

  

n n
p n  

5.2 Let {0} n  and then 
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( 1)( 9)

( |{2,3,5}) ( ) ,
60

  
  
 

n n
p n n  

   where 
1 if 0(mod5)and (2 | or 3 | ( 1)),

( )
0 otherwise.

  
  



n n n
n  

5.3 Let {0} n  and then 

       

2( 1)(2 49 656) 1 1
( |{2,3,5,7}) ( ) ,

2520 4 2

     
     

  

n n n n
p n n  

   where 
1 if 1,6(mod 7)and ( 2(mod3) or 4(mod5)),

( )
0 otherwise.

     
  



n n n
n  

5.4 Let {0} n  and then 

   
2 1 1 1 1

( |{2,4}) .
2 2 2 2 4 2

              
            
          

n n n n n
p n  

5.5 Let {0} n  and then  

      

2( 6) 1 1
( |{2,4,6}) .

24 2 2

      
    

   

n n n
p n  

5.6 Let {0} n  and then 

  

2( 2)( 14) 128 1 1
( |{2,4,6,8})

576 2 2

         
    

    

n n n n
p n  

             
6 1

.
32 4 4

        
       
      

n n n
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