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Abstract

The purposes of this research are to find formulas for
some restricted partition functions p(n |.S) valid for all positive
integers n and for some finite subset S of the natural numbers.
In particular, the method of Andrews and Eriksson is modified
for some conditions of elements

in the set S, where

S={1,2,3,...,m} and using the generating function, partial
fraction expansion, ¢g—partial fractions, the greatest integer
function and the nearest integer function. The results of this

research found that finding formulas for some partition
functions p(n|S) = p(n |partsin.S) can be discovered as the set

of prime numbers from 2to 7 and the set of even numbers from
2to 8.

Keywords:  Generating  Function, Restricted  Partition

Functions and q -Partial Fractions.

1. Introduction

different partitions of 7 is denoted by p(n). We

A partition of the positive integers 7. is a
way of writing n as a sum of positive integers
where the order of the integers in the sum does not
matter. We specify a partition 72 when we write it as
a sum of positive integers such that
n, +n, +...+n_=n. The integers n,,n,,...,n, are

called the parts of partition n. The number of

call p(n) the partition functions. p(0)=1 is
defined which makes sense because there is exactly
one partition of the integer 0, the empty partition

that has no parts. For example, since 10 can be

expressed as  the sum of positive integers by:

10,9+1, 8+2, 8+1+1, 7+3, 7+2+1, 7+1+1+1, 6+4, 6 +3+1,

6+2+2,6+2+1+1, 6+1+1+1+1, 5+5,5+4+1, 5+3+2,5+3+1+1, 5+2+2+1, 5+2+1+1+1,
S+HI+1+1+1+1,44+4+2,4+44+1+1,4+34+3,4+34+2+1, 4+3+1+14+1, 44+24+2+2, 442+2+
1+, 44+2+1+1+1+1L, 4+1+1+1+1+1+1, 3+3+3+1, 3+3+2+2,3+3+2+1+1, 3+3+1+1+1

+1, 3424242+, 3+2+2+1+1+1, 3+2+1+1+1+1+1, 3+1+1+1+14+1+1+1, 242+2+2+2,
242424241+, 2424+2+1+1+1+1, 24+ 2+1+1+1+1+1+1, 24+1+1+1+1+1+1+1+1 and 1+

1+1+1+1+1+1+1+1+1. As aresult,
p(10) =42.

A restricted partition is a partition in which
some kind of restriction is imposed upon the parts.
In this directions, restricted partitions are discussed

in H. L. Alder (1969 & 1979) and G. E. Andrew and
E. Kimmo (2004).
In 2004, Andrews and Eriksson discovered
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formulas for some restricted partition functions

p(n,m), the number of partitions of 7 into parts

i‘,p(n,m)q” !

(= =g)1=¢)-
Where p(n,m) = p(n|parts in{l,2,3,...,m}).

Therefore, the purpose of finding formulas for
some p(n|condition) is interestingly studied by
extended the results of Andrews and Eriksson and
modified some conditions in the set of positive
integers in this research.

2. Materials and Methods

In this give

definitions concerning the generating function, ¢-

section, we fundamental

fraction, the greatest integer function and the nearest
integer function are given to find formulas for some

p(n|S), where is a finite subset of N

Definition 2.1  Let .S be a finite subset of
N and p(n|S) denote the number of partitions of
n into elements of S (or in other words, the parts of

partitions belong to S). Then the univariate
generating function is given by:

;p(n 15)q" = El_qj
Definition 2.2 (Munagi, 2007).
fraction v(q)/(1—¢q")’ is called basic if it satisfies
deg(v) < d(n), (2.2)
where ¢ is the Euler phi—function.

, 2.1

Let q-

1

less than or equal to m, for m=1,2,3,4 by using

the generating functio

B (L.1)

Definition 2.3 (Rosen, 2015). The greatest

integer in a real number z, denoted by LxJ is the

largest integer less than or equal to z. That is La:J
is the integer satisfying

|z |<z<|z]+1. (2.3)

Definition 2.4 (Andrews and Eriksson, 2004).
Let x be a positive real number and {z} is defined
to be the nearest integer to z with the convention

that for any n e N

1 n  if n is even
n+—r=
2 n+1if n is odd.

3. Results
In this section, some formulas for p(n |S) are

2.4)

found, where S is a finite subset of N

Theorem 3.1 Let neN Then we
have
2n+2 n+1
n|{2,3}) = —| — 7.
p(n]{2,3}) { 3 { 5 J}

Proof. By Eq. (2.1), we have

1

ip(n 2,300 =

A B
+

I-)1-¢) (- (+9(+q+7)
N C N Dg+FE

(-9 =g l+g (+g+g)
After solving the system of linear equations by expanding the ordinary partial fraction decomposition,

(3.1) is obtained as below:

1/4 1/4 1/3
- - -

2 1/6
2,31)q" =
;p(nl{ D=5

I-q¢ 1+g¢ 1+q+q2.

3.1)

Next, each summand is transformed on the right-hand side into a sum of g-fractions (the first two

fractions are already basic):

/4 _(-qU/4 _-1/4 1/2
l+g (-¢)(+q) 1-q¢ 1-¢°
1/3 (1-q)(1/3)

_(1-9q)/2

and (3.2)

l+g+¢ (-g)(l+g+¢) 1-¢

(3.3)

Substituting the equations (3.2) and (3.3) into (3.1), we have
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Ve 12 (=03
2,3)q" =
;p(nl{ D= s e

By the binomial series formula of Andrews and Eriksson (2004), we have

=(n+m) | .
> ¢ =(1-g)"", |g|<1 (3.4)
n=0 m
+ !
where n+m :(n+1)(n+2) .:(n+m)..
m m! n!m!
< 1
If m =0, then Zq”zl—, <l. (3.5)
n=0 —q

Thus,

1/6 1/2 (1-¢)/3
p(n[{2,3})q" = + +
; (-9 1-¢ 1-¢

=—Z(n+l}l L Zq Tqi .

n=0

By the formula of Andrews and Eriksson (2004), we have

i z%/z[(n+1) 2VL;1D(] (3.6)

n+1J {0 if n is odd

where (n+1)— 2{ 5

1 if n is even.
Then,

© 1 © 0
Zp(n|{23})q 62(71? ]q"+%2[(n+l)—2l%ﬂq"+ Gq“—%qwj
lm n N (n+l)_ ’fL_+1 n N l 3n_l 3n+l
6 jq +Z[ 2 [ Dq +Z(3q 3 j

n=0

2

(n+1) (n+1) [nﬂJ . w(quh w( 1}3“1
+ - +D |-+ | =

g 2 2 |)! Z;‘ 3 Z; 3

= (2n+2 VHD (1) . —1) .

= | — "+ |z "+ — |q

Z; 3 2 32 3 3,;1 3

- 2n+2 n+1

> +&(n) |q",

2
1/3 if n=0(mod3)
where g(n)=4-1/3 if n=1(mod3)
0 if n=2(mod3).

€(n) can be seen that it takes only the values —%, 0, % Thus, the below result is concluded by the

n=0 3

uniqueness of Maclaurin series expansion that

p(n|{2,3}>=2”3+2 L”;lp é(n).

1
Note that p(n |{2,3}) is an integer and |8(n)| < 5"
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Therefore,

p(n|{2,3}>={2”3+2 —[”THJ}

This completes the proof.

Theorem 3.2 Let neN and then
n+1)(n+9
p(n]{2,3,5)) = {Mwm},
60
1 if n=0(mod5)and(2|n or3|(n—-1)),
where y(n) = .
0 otherwise.
Proof. By Eq. (2.1), then
> 1
p(n[{2,3,5})¢" =
nz-:? A-)(-¢H)1-¢")
B 1
-y’ 1+ A+q+)A+q+¢ +¢’ +q")
3 2
A B C N D N Eq+F +Gq +Hqg +1q+J

= 3 + 2 + 2 2 3 4 "
(-9 (-9 1-¢ l+q l+q+q 1+q+q +q +q
After solving the system of linear equations by expanding the ordinary partial fraction decomposition,
then obtaining

> . 1/30  7/60 77/360 1/8
> p(n{2,3,50)¢" = T+ T+ +
oy (I-q) (-9 l-q 1+¢q

(1-¢9)/9 (q3+q2+q+2)/5
+ 2+ 2 3 4 °
I+qg+q l+qg+q¢ +q +q

(3.7)

Next, each summand is transformed on the right-hand side into a sum of g-fractions (the first three
fractions are already basic):

8 _(-q1/8) _-1/8 1/4

- - g (3.8)
I+qg (-¢)(1+q) 1-q 1-¢q
(l—q)/?: (l—q)(l—q)/2 _1/9 q/33 and (3.9)
l+qg+q¢ (-@)(+q+q) 1-q 1—¢q
3 2 . 3 2 _ 2 3
(¢ +q +q+2)/5 _ (A-g)g +¢q" +q+2)/5 _-1/S (B+q +q)/5 (3.10)

l+g+@ +¢+¢"  (1-(+q++¢ +¢")  1—-¢ 1-¢’
Substituting the equations (3.8), (3.9) and (3.10) into (3.7) and then

= . 1/30 7/60 /3 B+ +q)/5
S pn| 235" = oy O A0 Cra )]
= (-9 (-9 I-g¢ 1-¢

By Eq. (3.4) and Eq. (3.5), then the below result is obtained

® . 1 &(n+2) , 7T &(n+l) . 1& ,,
> p(n {2,350 ¢" ==—> q q"+=> q"
o 30 2 44

+—
60 n=0

n=0 1
IE 50 3+CHC S s,
R
371,:0 5 n=0

(1 (n+2)!) , (7 (n+1)!j Lol
- il S 4 A +—
;(30 12! ]q 2(60 a ) 4;;q

n=0
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o0

_%iq%wl 3+q +q Z

n=0

(n+1)(n+9)j (lj (—_1]
z ( )T )

q + - |4
Sn (5 S\n 2 5;3 5

((n+l)(n+9)

+

8(”))9 ; @.11)
Where g(n) = fi(n)+ fz(n) + f,(n) and
1/4 if n=0(mod2)
Si(n)=
if n =1(mod 2)
—1/3 if n=1(mod3)
L(n)=
if n=0,2(mod?3)
3/5 if n=0(mod5)
fi(n)=11/5 if n=2,3(mod5)
0 if n=1,4(mod5).
There are 12 possible values of &(n), namely:

17—19—1—230741131

2003720°12°15°57 7601574757 60°
With

|8(n)| > % if and only if n =0(mod5) and (2|n or 3 J(n—1)).
By comparing the coefficients of the power series in Eq. (3.11), then
n+1)(n+9
pin | 2.3,5) =LA o)

Define
1 if n=0(modS)and(2|n or3|(n-1)),
x(n)= .
0 otherwise.

Since p(n|{2,3,5}) is a non-negative integer, then the below result is obtained

p(n]{2,3,5)) = {% . g(n)}.

This completes the proof.

Theorem 3.3 Let neN and then
(n+1)(2n*> +49n+656) 1| n+1
2,3,5,7}) = - + ,
p(n|{ 1) { 3520 i x(n)
1 if n#1,6(mod7)and(n # 2(mod3) or n # 4(mod5)),

where y(n) = {
Proof. By Eq. (2.1) and then

> 1
2,3,5,7V)q" =
2235 TN = s s

0 otherwise.
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1
(=)' A+ +q+ ) A+q+7 +¢ +¢ )1 +q+¢* +¢ +¢* +¢ +¢°)
A B C D E
= -+ -+ ~+ +
(I-¢)" (-¢q) (A-¢g)° 1-q l+gq
Fg+G Hq +1¢’ +Jq+K+Lq + Mq* +Nq +Pq +Qq+R
l+q+¢° 1+q+q +¢ +¢* l+qg+¢+¢ +¢" +¢ +¢°
After solving the system of linear equations by expanding the ordinary partial fraction decomposition,

the below result is obtained

2 . 1/210 13/420 251/1520 23/112 1/16 1/9
> p(n]{2,3,5,7})q" = T+ + + >
. (I-¢° - Q) (1-gq)’° 1-¢q 1+q I+q+q
(1+q )/5 (2+q+q +2q +q )/7 (3.12)

l+q+¢ +¢ +¢° 1+q+q +¢@+¢ +¢ +¢°
Next, each summand is transformed on the right-hand side into a sum of g-fractions (the first four

fractions are already basic):

1/16 _(1-q)(1/16) _-1/16 1/82 (3.13)
I+qg (I-@(+q) 1-q 1-¢

1/9 __ 1-9)/9 : :(1—Q)3/9 (3.14)
l+qg+q¢ (A-@)(+q+q) 1—¢q

2 _ 2_ 3

(l+2q)/35 4=(1 q+q 561)/5 (3.15)
l+qg+¢* +q¢ +¢q l—q

Qtg+q*+20°+¢)/7 _-1/7 G+q +2¢ 4 +2¢)/7 (3.16)
I4+q+¢ +q'+q¢" +¢ +¢°  1-¢ I=¢ |

Substituting the equations (3.13), (3.14), (3.15) and (3.16) into (3.12) then
1/210 13/420 251/1520 1/8 (1 q)/9

S p(n]12.3,5.7}) " =210 |
2P 23S TN = e o Ty T g

Jr(1 q+q° —q )/5 GB+q° +2¢ q Y424 )/7
1-¢’ 1-¢’
By Eq. (3.4), Eq. (3.5) and Eq. (3.6), then the below result is obtained

n+3 13 &(n+2) 250 &(n+l -
012,357 q" = —— BRiyeos T ,
Zp( I{ g 2104 [ 3 ]q 420n_0[ 2 Jq 252071_0( ] 20

0

+1—QEq3n+l q+q - i 3+q +2q -¢*+2¢ Z
=0

n=0

e L_(n+3)! LS(13 @A), & 251 (D),
_Z( Jq +§(240 12! jq +Z(2520 ! jq

120 n!3!

S5 $(0) 55

n=

0 0

+§:[_1 q5n+1 +§:(é)q5n+2+i(__qu5n+3+2(%jq7n +Z(%)q7n+2
= 0 n=0

n
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ZEE(n+1)(2n2 +49n +341) +((n+l) _l{n+lJan

2520 8 4] 2

1 n -1 n 1 n -1 n
=g+ — "+ > | = |¢" + —
o) 25 2lshr 25
Zlshr 232 Z 5
Sin—2 5 S5in—-3 5 i 7 Tin—2 7

2 n __1 n g n
+7|;3[7jq +Z( 7 jq +7;5(7jq

) 2
5 (n+ D20 +49n+656) 1 n+l]
- 2520 41 2

Where €(n) = fi(n)+ f,(n)+ f;(n) and

1/9 if n=0(mod3)

fi(n)=<1-1/9 if n=1(mod3)

0 if n=2(mod3),
1/5 if n=0,2(mod5)
L(n)=<-1/5 if n=1,3(mod5)

0 if n=4(mod)),

3/7 if n=0(mod7)

1/7 if n=2(mod7)
fitny=< 2/7 if n=3,5(mod7)

—1/7 if n=4(mod7)
0 if n=1,6(mod7).

There are 46 possible values of &(n), namely:

3157 45 357315 63 35 457315 5° 63 315" 35 315 7’
14 =53 =73 11 1 107 4 -2 25 —17 3 37 _ 143 -8 2

-1 22 73 -2 1 -143 20 17 8 2 53 1 163 -1 2 34

9735 315" 63" 77 315 63 315735 77315797315 7 63 63
with

le(n)| > % if and only if 7 #1,6(mod 7) and (n # 2(mod3) or n £ 4(mod 5)).

By comparing the coefficients of the power series in Eq. (3.17), the below result is obtained

p(n]{2,3,5,7}) =

2
(n+1)(2n° +49n+656) _l{n+lJ+8(n).
2520 4

Define

) 1 if n#1,6(mod7)and(n # 2(mod3) or n #4(mod)5)),
n)=
X 0 otherwise.

Since p(n]{2,3,5,7}) is a non-negative integer, then this below result is presented

132
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2
(n+D(@2n"+49n+656) 1| n+l re(n)b.
2520 4] 2

p(n[{2,3,5,7}) ={

This completes the proof.
Theorem 3.4 Let neN and than

(n+2 n+l_ n+l l n n—1
p(n|{2’4})_( 2 j( 2 [ 2 D+2@4J { 2 D
Proof. By Eq. (2.1) and then

> (] 240" =

1
(1-¢")1-¢") (1-9)'(+9)’(1+q")
A B C D Eq+F
= >+ + >+ + —.
(=¢)" 1=¢ (+q) I+q l+q
After solving the system of linear equations by expanding the ordinary partial fraction decomposition,
(3.18) is obtained

1/8 1/4 1/8 1/4 1/4
Zp(n|{2 M)q" = St — St ——t——
=0 (-9 1-¢ (+q)° l+q I+gq
Next, each summand is transformed on the right-hand side into a sum of g-fractions (the first two

(3.18)

fractions are already basic):

/4 _(-q/4) _-1/4 1/2

= . (3.19)
I+q (-¢(d+q) 1-q¢ 1l—¢q
1/4 1-¢)/4 -1/4 1/2
- _WtdE TR, e (3.20)
I+ (A-¢)1+q") 1-¢° 1l—gq
—_— 2 —_—
1/8  (-¢)/8  -1/8 1/4 1/2 G21)

= = +
(I+g)° (1-9(+g (-9 1-¢* (1-¢°)
Substituting the equations (3.19), (3.20) and (3.21) into (3.18), we have
< 1/2 1/2
p(n|{2,4})q" = + -
nz-; (1-¢*) 1-¢'
By Eq. (3.4) and Eq. (3.5), the below result is obtained

2 1
2. p(n]{2,4))q" =~ Z(er Zq“"— Z(n+1)q2”+ Z(f”

n=0 n=0 n=0 n=0 n=0

By Eq. (3.6), then

a,q Zan/z(mﬂ) 2{”2“Dq ,

n=0
n+1J {0 if n is odd
2

By similar reasons, from the above one then (3.12) is obtained

Z; ;a’”“ ﬂ J VT_IDQ (3.22)

th {n_lJ 1 if n=0(mod4),
where | — || — | = .
4 4 0 if n #0(mod4).

Where (n+1)—-2 } .
1 if n 1s even.

Then,
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gp(n 1{2,4})q" = i(%(%ﬂj((nﬂ)—zl%ﬂlq"

n=0

SLEHE)
3z ez sz H )

By comparing the coefficients of the power series in Eq. (3.23), the below result is obtained
n+2\(n+l | n+l I{|n n—1
n|{2,4}) = - +=| == — |
porlt })(212{2D2&4H4D

This completes the proof.
Theorem 3.5 Let neN and then

B (n+6)° n+l |n+l
p(n|{2,4,6}>—{ - (2 {2 J]}

Proof. By Eq. (2.1) and then

S p(n | 2.4.6))¢" =

1
A-¢*)1-¢H(1-¢%
~ 1
1-¢)’(1+¢)’ A+ )A+q+¢)A—q+¢%)

A B C D E F
= T+ =+ + T+ >+
(I-q) (d-¢)" 1-q¢ (A+q)y (I+q) 1+¢q
+Gq+£{+ Iq+J2+ Kq+L2.
1+¢q l+qg+gq 1-qg+gq

After solving the system of linear equations by expanding the ordinary partial fraction decomposition,

(3.24) is obtained
- . 1/48 3/32  61/288 1/4 3/32  61/288
Zp(n‘{254a6})q: 3+ 2+ + 3+ 2+
o -9 (-9 1l-q¢ (A+¢9 (1+9° l+¢g
N 1/82 +(2+q)/128+(2—q)/128. (3.24)
I+q¢ 1+qg+gq 1-q+q

Next, each summand is transformed on the right-hand side into a sum of g-fractions (the first three

fractions are already basic):

1/8  (-¢>)(1/4) -1/8 1/4

2: > 5 - 2+ 4 (325)
I+ (-¢)1+q) 1-¢ 1-¢
61/288 _ (1-¢)(61/288) _—61/288 61/114 (3.26)
l+q (I-¢)(1+q) 1-¢ I-q
2+9)/18 _(1-¢)2+)1/18) -1/18 1/6 (3.27)
l+g+¢’  (-g+g+¢) 1-g 1-¢

2
3/322:(1—9;)2(3/323:—3/322+ 3/%2_3/162 (3.28)
(I+9° (-9 (+9)" (-9 (1-¢) 1-¢
J— 3 -_
1/48  (1-¢)'(1/48) _-1/48 1/6 1/8 (3.29)

(1+9} (1-¢’(+qy (-¢f -V (1-¢)
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2-¢)/18  (2-q)(1+q)1/18) 1/18 B 1/9 B 1/6 N 1/3
I-g+¢*  (+@)(-g+g") 1-¢g 1-¢" 1-¢ 1-¢
Substituting the equations (3.25), (3.26), (3.27), (3.28), (3.29) and (3.30) into (3.24), then

o 176 /4  1/4 1/3
> p(n]{2,4,6})q" =
n=0

+ + +
(1-¢) (1-¢")" 1-¢" 1-¢
By Eq. (3.4) and Eq. (3.5), then

w © ) |
Zp(n|{29496})qn=22(n; jqzn-l-iZ(n;_J Zq477+ qu

n=0 n=0

(3.30)

1s obtained.

n=0 n=0 n=0
i((n"_l)(n_'_s)jq +_iq4n+liq6n
n=0 4n:0 371,:0
X n*+6n+9 4 15 6 IS5 o
_ZO( 12} RPXIREIN
> 3 > > (1
3 e W59 C3 e (7
n=0 =0 n=0 3 n=0 3

By Eq. (3.6). Then,

ip(n|{z,4,6})q"=i(%[< £1)- 2 n+1 ] q +z( ) z( j
n=0 2\7;

n=0 4ln 6|n

i((n+6) [(n;—l) n+l g(n)jq, aan

where g(n) = f(n)+ f,(n)+ f;(n) and

_|=1/3 if n=0(mod2)
him)= 0 if n=1(mod2),
£ ()= {1/4 1ffn_ O(mod 4)

n=1,2,3(mod4),
1/3 if n=0(mod6)
ji- {150
if n=1,2,3,4,5(mod 6).

We see that €(n) takes only the values

—1 —1 1
127374
Now the below result can be concluded by the uniqueness of Maclaurin series expansions as

o] 2.4.61) = (n+6) ((MD_VHD”(")'

48 2 2

By p(n|{2,4,6}) is a positive integer and |8(n)| < %

_J(m+6)’((n+]) | n+1
p<n|{2,4,6})—{ = ( . Lz D}

This completes the proof.
Theorem 3.6  Let neN and then

Therefore,
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(n+2)(n+14)* +128 [nH_VHD
576 2 2

(n+6j {nJ {n—lJ
+H— = |- — I}
32 4 4
Proof. By Eq. (2.1), then
< 1
p(n|{2,4,6,8})¢" =
Zﬁ (1-¢)(1-¢")1-¢")1-¢")
B 1
(1-9)'(1+9)'(1+¢*)(+¢")A+g+¢")1~-g+7")
A B C D E F J H
= T+ =+ >+ + T+ -+ >+
(I-9)° (-9 (-9 1-¢ (I+g A+¢° (I+9)° Il+¢
Iqg+J Kq+LJr Mq+ N N Oq+P +Qq3+Rq2+Sq+T
(1+¢°) 1+¢* 1+q+q¢ 1—-g+¢ 1+¢* '

p(n]{2,4,6,8})= {[

After solving the system of linear equations by expanding the ordinary partial fraction decomposition,

the below result is obtained
z . 1/384 1/48 187/2304 51/256 1/384 1/48
D p(n]{2,4,6,8)¢" = T+ —+ — + T+ -
"o (I-¢9)" (-¢ (-9 I-¢ (+¢q° (I1+9)
187/2304 51/256 1/32 1/8 1/18 1/18 1/8
2 + + 2 2+ 2+ 2+ 2+ 4
(1+q) 1+q (I+q¢°)y 1+q¢ 1+q+q 1-q+q¢ 1l+gq

Next, each summand is transformed on the right-hand side into a sum of g-fractions (the first four

(3.32)

fractions are already basic):

U8 _ (-¢)1/8) _-1/8 1/4

= = 3.33
1+¢ (1-¢)A+¢") 1-¢ 1-¢* G-39)
1/8 1-¢H1/8) -1/8 1/4

T ( (Z X 3 = i 8 (3.34)
I+¢° (-q¢)(+q¢") 1-¢° 1-gq
1/18 __ (1—q)(1/18)2 :(l—q)/318 (3.35)
I+g+q¢ (I-q@)(+q+q°) l—q
51/256=(l—q)(51/256):—51/256+51/1228 (336)
l+q (I-¢)1+q) l—q l-q
1/48  (1—q)*(1/48) —1/48  1/8 1/6

3:( q)3( 2: 3 VI 2\3 337

(I+q9) (-¢y(+q) (-9 (d-¢°) (d-q)
1/32 1-¢*)*(1/32 -1/32 1/8 1/16

22:( zz( 2)2: ot N2 2 (3.38)
(I+¢ ) (A-¢ ) d+q¢) (A-¢) A-¢") 1—gq
1/384 (1—¢)*(1/384) —-1/384 1/24 1/24 1/192

/ 4:( q)4(/ 4): / uf /24_ /23+ /922 (3.39)
(I+¢)" d-¢'d+q)° (d-¢9° dA-¢ ) (A-¢ )y ((1-q°)
187/2304 (1—¢)*(187/2304) —187/2304 187/1152 187/576
2 2 2 2 > T 22 (3.40)
(I+q) (I-¢g)"(1+q) (I-q) 1-q (I-¢%)
1/18 (1+9)1/18)  (A-¢)A+¢)1/18) (-1—¢)/18 (1+¢q)/9
> = 5= 3 3 = 3 + 3 (3.41)
l-g+q¢° (A+q)(-q+q°) (I-¢)1+q) l-gq l-gq
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Substituting the equations (3.33), (3.34), (3.35), (3.36), (3.367), (3.38), (3.39), (3.40) and (3.41) into

(3.32), then
s " 1/24 1/8 25/144 1/8 1/9 /9
Zp(n[{2,4,6,8})q = o 3 T VI G 2_q 3
"0 (-¢)" (d-¢)y (A-¢) (-¢) 1-¢ 1-¢
+l/16+(l+q)/9+ 1/4
1-¢* 1-¢° 1-¢°
By Eq. (3.4) and Eq. (3.5) and following that

ip(n!{2468})q _15 [n+3] ’n Z”:(n+2] ) i[nﬂ]
"0 24n0 3 0 <
© 1 1& | & e
i Z(m ] 4“5312” XTI
- n=0 n=0

nO

id obtained.

(s 1) (el 1)
=2\ 9)‘] +Z( 8 +16jq

GG 2525

By Eq. (3.6) and Eq. (3.22), then

ip(n|{2,4,6,8})fﬂ ZH("”)(HH@ +128][n+1 n+1 Dq

n=0 n=0

+ a(n)]

where €(n) = fi(n)+ f,(n)+ £, (n) and
—1/9 if n=1(mod?3)
fitn)= .
0 if n=0,2(mod3),
1/9 if n=0,1(mod6)
if n=2,3,4,5(mod 6),
1/4 if n=0(mod8)
fi(n) =
if n=1,2,3,4,5,6,7(mod8).
We see that €(n) can be seen that it takes only the values
1,115 13
97797473636

Now, the below result is concluded by the uniqueness of Maclaurin series expansions as

p(n|{2,4,6,8}):((%2)(%14)2+128j(n+1_[n+1D

- {

3

576 2 2

ez

1
Since p(n|{2,4,6,8}) is a positive integer and |8(n)| < 5" Therefore,
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(n+2)(n+14)* +128

n+1_ n+1

p(n]{2,4,6,8}) = {[

n+6

This completes the proof.
4.
4.1 The results of this research are close to the
research of G. E. Andrews and E. Kimmo (2004),
who studied formulas for partition functions and

Discussion

obtained the formulas for p(n,m), the number of
partitions of n into parts less than or equal to m,
for m=1,2,3,4.

found in this research is to use the generating

In this research, similar result

function, partial fractions decomposition, binomial
series, summation of the geometric series and
uniqueness of the Maclaurin series expansions,
however, the main results of this research are
difference because some relevant theories such as
q -fractions, the greatest integer function, the

nearest integer function and congruent are used to
find formulas for some partition functions p(n|.S),

where S is a finite subset of N that is, the set of
prime numbers from 2 to 7and the set of even
numbers from 2 to 8.

4.2  The results of this research are close to the
research of M. S. Ladan, D. Singh, and Y. Tella
(2018), who studied the extension of formulas for
partition functions of G. E. Andrews and E.
Kimmo (2004), for m=15,6,7,8,9,10,11. Similar
result found in this research is to use the generating
function, partial fractions decomposition to obtain
power series expansions, however, the main results
of this research are difference because some relevant
theories such as ¢-fractions, the greatest integer

function, the nearest integer function, binomial
series, summation of the geometric series, congruent
and uniqueness of the Maclaurin series expansions
are used to find formulas for some partition
functions p(n|S), where § is the set of prime

numbers from 2 to 7 and the set of even numbers
from 2 to 8.

51 LetneN and then
2n+2 | n+l
nl|{2,3}) = - — 7.
p(n]1{2,3}) { 3 { 5 J}
5.2 Let nelN and then

576

(sz‘

n
4

[

J

2 2

n—1

F=))

43
research of Augustine O. Munagi (2007),
studied the Computation of g-Partial Fractions
and extended the results of the research of P.A.
MacMahon (1960) and A. Cayley (1898) for
p(n,m), where

The results of this research are close to the
who

m=2,3 and discovered the
formulas for p(n,m), where m=4,5. Similar

result found in this research is to use the generating
function, partial fractions decomposition and some

definitions of the g-Partial v(q)/(1—¢")’ is called
basic if it satisfies degree(v) < (n), where ¢ is

Euler phi-function and the q-partial fraction

decomposition of the g-fraction A(q) is a represen-
tation of A(q) as a finite sum of basic g-fractions
with distinct denominators, however, the main
results of this research are difference because some
relevant theories such as the greatest integer
function, the nearest integer function, binomial
series, summation of the geometric series, congruent
and uniqueness of the Maclaurin series expansions
to find formulas for p(n|S), where S is the set of
prime numbers and set of even numbers, that is,
S=1{2,3}, §=1{2,3,5}, S =1{2,3,5,7}
S={2,4}, §={2,4,6}, S ={2,4,6,8}
respectively.

5. Conclusion

and

The main objective of this study of some new
partition function concerning restricted partition
valid for all positive integers 7 of the general type:
p(n|S)=p(n|parts in.S)can be studied by using
the method of Andrews and Eriksson (2004), the
generating functions and g-fractions are the tools to
find formulas for some restricted partition functions.
The following results is obtained
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p(ni2,3,5}) = { o

where y(n) = {

53 LetneN

0 otherwise.

and then

(n+1)(n+9)

+ x(n)},

1 if n=0(mod5)and(2|n or3|(n—-1)),

p(n[{2,3,5,7}) = {

where y(n) = {

n+D)2n*+49n+656) 1| n+l
L. R L 1
2520 4

1 if n#1,6(mod7)and(n # 2(mod3) or n # 4(mod5)),

2

)

0 otherwise.
54 LetnelN and then
n+2 n+1 n+1 1
n|{2,4})= +—
p(n]12,4}) ( 5 j( 5 J 5
55 LetneN and then
(n+6)° n+l
nl{2,4,6})=
p(n|{ 1) { 4
56 LetneN and then

l:H
)
J

p(n|{2,4,6’8})2{((n+2)(n+14) +128 (nﬂ n+1D

()| 2=
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